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Abstract. With over 80% of global internet traffic attributed to video content, and tentpole movies 
averaging 2,840 tonnes of CO2 emissions, the media industry faces urgent sustainability challenges 
that will intensify with the increased adoption of AI in production workflows. The industry is embracing 
techniques such as Virtual Production (VP), and its wider adoption is expected to reduce the energy 
demands and carbon footprint. However, there are no existing standards or tools available to 
developers of visual processing algorithms, techniques and systems to assess the energy footprint of 
existing workflows in post-production and VP, or to guide the development of new algorithms and tools 
that are optimised for energy consumption. The main contribution of this work is to outline frameworks 
for monitoring the energy consumption of existing video processing pipelines using a set of software 
and hardware tools, and thus establish a standardised method to perform energy consumption 
measurements/profiling at runtime. Two different approaches for energy monitoring are presented to 
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understand the current power requirements of standard VP hardware. The first approach uses 
deployable out-of-band monitoring interfaces for real-time monitoring and capacity planning. The 
second approach builds on profiling techniques to characterise the accuracy of on-device and on-chip 
power measurements, developing an invasive scheme to characterise the energy costs of mapping 
existing VP tasks to specific resources (CPU or GPU). Together, they enable run-time monitoring and 
granular characterisation to aid with energy-aware development and deployment of post-production 
and VP workflows.  

 

Keywords. Energy efficiency, Virtual Production, Energy monitoring
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Introduction 
 

The media industry faces critical sustainability challenges. Digital media production and content 

delivery now accounts for over 80% of global internet traffic, while tentpole movies generate an 

average of 2,840 tonnes of CO₂ emissions [1]. New technological developments and increased 

adoption of AI-powered tools in content creation, production, and distribution could lead to 

multiplier growth in energy consumption and carbon emissions. Whilst Virtual Production (VP) 

techniques could reduce energy demands and carbon footprint [2, 3], no existing standards or 

tools are available to developers or creators to assess the energy footprint of existing digital 

workflows (post-production) or the digital synthesis techniques used in VP.  

Existing profiling tools from manufacturers like NVIDIA SMI and Intel SoC Watch, along with 

cross-platform solutions such as RAPL, can estimate energy costs but only for specific hardware 

components. VP workflows present unique challenges as they involve complex functions 

executed across multiple computing elements such as CPUs, GPUs, ASICs, and FPGAs, to 

achieve optimal performance. Estimating the energy cost of end-to-end VP systems becomes 

even more complex when accounting for data storage, network interconnects, and display 

systems, especially in the context of high-resolution video data. This multi-component architecture 

makes comprehensive energy assessment difficult with current single-hardware profiling 

approaches. 

The lack of standardised protocols for measuring energy consumption across VP ecosystems 

further compounds these challenges. Current methodologies, where they exist, are typically 

bespoke solutions tailored to individual systems, preventing industry-wide adoption and 

comparison. This work addresses these limitations by outlining standardizable pipelines and 

techniques for the broader media technology landscape. We present two complementary 

approaches: first, leveraging existing server management systems commonly found in media 

processing workstations for production-ready monitoring; second, developing invasive sensing 

schemes for precise benchmarking of new system configurations and algorithms. The data 

collected from these methods enables energy-aware workflow automation and granular 

monitoring tools that can estimate task-level energy consumption. This framework provides 

developers with the tools needed to validate whether new systems improve upon existing 

solutions and encourages greater focus on sustainability in future workflow development. 

Additionally, the lack of a standardised protocol/framework for measuring the energy consumption 

of Virtual Production tools across the wider VP ecosystem is a limiting factor for understanding 

the energy overheads of current systems, and for the development of new energy-optimised 

workflows. Currently, these methodologies, where they exist, can be very bespoke and 

specialised to individual systems. This work outlines standardisable pipelines and techniques that 

can be adopted across the wider media technology landscape in order to encourage a more 

energy-conscious approach to developing new technologies and workflows. We outline two 

approaches, one which explores existing server management systems that are commonly part of 

media processing workstations, and secondly, an invasive sensing scheme for benchmarking 
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new system configurations and algorithms. We show that the data collected from these methods 

can be used to develop energy-aware automation in workflows and for developing granular 

monitoring tools that can estimate task-level energy consumption to help develop energy-

optimised workflows and tools. We believe that an adoptable flow, such as the one outlined in this 

work, will drive more developers to validate whether their new systems are greener than previous 

versions and ensure that more effort is put towards sustainability for new workflows in the future. 

The specific contributions of this work are outlined below:  

● Developing a site-level monitoring framework for capturing energy consumption of media 

servers and systems on-site  

● An architecture for an invasive hardware-based monitoring system for calibrating on-chip 

and on-device sensors and for developing energy-optimised algorithms  

● Characterisation of existing workflows for virtual production and post-production tasks 

using the above tools to arrive at pathways for system-wide optimisation and energy 

estimation tools  

The remainder of this paper is organised as follows. The related work section outlines existing 

tools and workflows for energy estimation and monitoring, from vendor flows to academic 

solutions. The methodology section describes the hardware and software architecture of the site-

level monitoring framework and the invasive hardware monitoring system. The results section 

describes the test setup and observations from benchmarking virtual production systems and 

post-production tasks using industry-standard tools. The discussion section outlines the data 

collection and training flow for a non-invasive energy estimation flow that is enabled by the 

systems developed in this work. Finally, the conclusion section concludes the paper.  

  

Related Work  

Existing power measurement tools can be broadly categorised into schemes that directly measure 

system-wide power consumption, use hardware on-device and on-board sensors through 

software APIs, or indirect methods that use modelling techniques to estimate energy consumption 

on the CPU/GPU for different workloads [4–6]. System-wide power can also be measured through 

external AC power meters (wall power) and from power rail data on PSUs (where available) to 

capture a system-wide view of the run-time power consumption, voltage and current levels, and 

energy consumption [6]. Wall power measurements also factor in the inefficiencies of the power 

supply unit (PSU); however, these solutions are often unable to isolate a specific components’ 

power consumption when executing a specific task, and hence offer limited potential for optimising 

an algorithm or a workflow during the development phase.  

On-chip and on-device sensors are embedded in GPUs and specific motherboards, allowing for 

the monitoring of device-level / rail-level power consumption at runtime. Vendors provide software 

IPMIAPIs that can probe such sensors to compute and log the real-time power consumption, as 

seen in tools such as NVIDIA-SMI [7]. In high-end servers, such information can be extracted 

through out-of-band interfaces such as the intelligent platform management interface (IPMI), 

which probes voltage and current sensors on the motherboard to determine run-time power 
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consumption [8]. However, multiple studies have identified the inconsistency of such 

measurements stemming from lower accuracy of sensing and limited data acquisition (sampling) 

rates [4,5,6,9,10]. Recent works have also shown that different CUDA versions only have a minor 

impact on the power measurements reported by NVIDIA-SMI, although variations exist between 

GPU generations [11]. Additionally, many vendors restrict access to IPMI through proprietary 

solutions, limiting their widespread adoption for high-precision energy monitoring.  

Invasive measurement techniques have been shown to be the most accurate method to measure 

power directly off the internal power circuits. These approaches embed instrumentation circuits 

into the output of the PSU to monitor the CPU/GPU power lines directly. The main advantages of 

this approach are its higher sensitivity and acquisition capabilities compared to on-device and on-

chip solutions. Multiple research papers have explored the use of invasive solutions to assess the 

power consumption of GPU and CPU while profiling specific tasks [12–17]. The invasive nature 

of this solution and the expensive sensing/acquisition systems limit its applicability for real-world 

profiling solutions in media servers for characterising hardware components and for 

benchmarking applications.  

Energy estimation techniques are another widely used method to predict the energy consumed 

by applications on CPUs and GPUs. Popular methods, such as running average power limit 

(RAPL) and extensions pyRAPL [18], use low-level CPU metrics and performance counters to 

estimate the run-time power consumption to a high degree of accuracy.  Internally, RAPL 

estimates are used by profiling tools such as Intel’s VTune profiler and SoC Watch [19] energy 

estimation tools for Intel CPUs. Studies show that the RAPL estimates are within 10% to 22% of 

the ground truth energy measured by physical invasive sensors [20] when profiled on matrix 

multiplication tasks. Multiple tools have been built on RAPL and pyRAPL modules, such as 

CodeCarbon [21] and Experimental-Impact Tracker [22]. It should be noted that RAPL registers 

are limited to 32 bits, are not updated frequently or deterministically, and do not include 

timestamps for the data, making them less suited for long-term profiling. Additionally, RAPL and 

similar tools are unable to isolate a specific task from background activity, which poses significant 

challenges for systems where multiple tasks can be executed in parallel.  

Predictive and simulation models are another way to estimate the power consumption of tasks on 

CPU/GPU platforms. Predictive models carefully model the system through extensive simulations 

or emulations, and by establishing correlation with low-level performance counters for estimating 

the energy costs [5,6]. Simulation models, however, should capture the architecture details of the 

CPU/GPU platform for accurate results. Wattch [23], McPAT [24] and GPUWatch [25] are 

examples of such frameworks, which model numerous internal blocks to accurately estimate 

energy costs and other performance parameters when running specific algorithms on them. Other 

tools use machine learning models to establish a correlation between low-level performance 

counters and reported power for a set of applications benchmarked from a training dataset 

[26,27,28,29,30]. However, their accuracy is driven by the diversity of the dataset and the 

accuracy of the ground truth environment.    
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In virtual production and extended reality (XR) environments, media servers and computing 

systems form one part of the chain, with LED displays and signal routing components forming the 

remaining energy-consuming components. It has been shown that display modules can consume 

up to 34% of the energy of the entire chain [31]. Other experiments [32, 33] have shown that the 

brightness of the colour and the content displayed have a significant impact on the power draw of 

LED walls. However, there is no tooling in existence that can pool the energy information from 

different resources in a VP/XR chain.  

This work thus focuses on addressing the challenges of energy monitoring across the chain (for 

VP/XR components) for estimating end-to-end energy costs of a media pipeline and the low-

sampling rate and accuracy of existing invasive measurement systems (on-device or invasive 

probes) to capture rapid power peaks caused by dynamic loads in post-production algorithms. 

Methodology  

The main contribution of this work is to develop a baseline for the energy consumption of existing 

video processing pipelines by building a set of tools and a standardised method to perform 

measurements at runtime.  

One technique focuses on end-to-end monitoring through out-of-band services for a VR/XR 

platform, leveraging the management interface existing in XR servers and by developing tools to 

automate the measurements at runtime. The developed tools will characterise the end-to-end and 

machine-specific power consumption when running a curated set of test cases in a scaled model 

of a VP environment. The second technique aims to characterise the accuracy of on-device and 

on-chip power measurements through an invasive monitoring platform and subsequently 

characterise the energy costs of mapping existing VP tasks to specific resources (CPU or GPU) 

and use the framework to establish the correlation between low-level instructions being executed 

for these tasks and the energy costs they incur.   

This dual approach provides both production-ready monitoring tools deployable on existing 

systems and precision measurement techniques for detailed optimisation during tool development 

and platform design, establishing a comprehensive framework for energy assessment of VP 

systems and energy-aware development of new VP solutions. 

Out-of-band end-to-end energy profiling for XR 

In XR pipelines, real-time rendering, compositing, and display operations demand substantial 

electrical power. For this work, we focus on hardware infrastructure, specifically power-intensive 

components such as Disguise media servers and LED display volumes. Power monitoring in 

these systems can be approached through either hardware or software techniques, leveraging 

existing sensors available through low-level monitoring interfaces or physically probing power 

pins. The approach discussed in this subsection leverages integrated sensors and non-invasive 

methods rather than developing custom external hardware. We used a combination of hardware 

and software approaches most suitable to the interfaces available in the standard Disguise 

system architecture shown in Figure 1. 
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Embedded Profiling Infrastructure 

 

Figure 1. Internal media-server monitoring architecture (GX3) [36] 

The principal monitoring agent is the System Management Controller (SMC) available on most 

Disguise systems. The SMC is a Disguise embedded platform that allows direct out-of-band 

interaction with server components via the Baseboard Management Controller (BMC) and host 

operating system [37] relying on open standards such as IPMI, SMBus, and PMBus.  

As described in Figure 2, using the Intelligent Platform Management Interface (IPMI), we can 

query the BMC Sensor Data Repository, which collects readings from the PSU Power Supply 

Management Controller (PSMC) via the Power Management Bus interface (PMBus), a subset of 

the widely used System Management Bus interface. The PMBus protocol is an application-layer 

command set that operates over the transport layer of the System Management Bus (SMBus) 

[38,39]. 

Each SMC has tooling to support IPMI. Using this tooling, the contents of the Sensor Data 

Repository sourced from the PSU can be queried. An Infrastructure Assessment was conducted 

to evaluate which Disguise media-server architectures allowed this real-time monitoring. The 

primary advantage of this approach is that we avoid significant overhead on the measured 

system. The use of the NVIDIA System Management Interface (SMI) [7] was also investigated to 

be able to differentiate between overall system power draw and component-level draw.  
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PSU Characterization 

The PSU unit in the servers under test was characterised for measurement accuracy and 

sampling rates, which are captured in Table 1. 

Table 1: PSU parameters for the servers under test 

Sampling Rate Fixed at 1 Hz by the PSMC-interfaced sensor. ASPEED AST2600 BMC SoC has 
a significantly higher sampling rate. [40] 
 

Resolution Standard IPMI readings display 10W quantisation when integrated into the 
Sensor Data Repository. I2C raw commands are used to directly communicate 
with the I2C bus, bypassing the BMC's Sensor Data Repository (SDR) 
abstraction layer. [41] 

Accuracy Tests comparing PMBus with calibrated external meters showed a variance of 
±1-2W. For characterisation, we used a steady-state testing sequence under 
controlled GPU load using Furmark at 11520×2160, 8× MSAA, 85-87% TDP. 

 

For this development, SMC firmware was developed to query the BMC SDR at configurable 

intervals, extracting both input and output power metrics from the PSU. Excessive polling was 

avoided, which could otherwise result in duplicate readings as the PSU Management Controller 

pulls sensor data at a fixed 1 Hz interval regardless of IPMI polling frequency. [41] 

Energy Profiling API 

Power metrics are exposed through the SMC API endpoints, enabling integration with monitoring 

systems, such as the Disguise QA One-Stop Platform across management networks. This 

integration provides both real-time visualization and historical data collection. While PMBus does 

not provide individual power rail measurements (GPU-specific consumption), the total system 

power data correlates effectively with workload characteristics, as evaluated in initial calibrations. 

For component-level analysis, PMBus data can be supplemented with GPU-specific metrics from 

NVIDIA SMI for a more granular energy profile [7], though we leave this for future work. These 

monitoring capabilities are included in firmware release 2025.01 with full API documentation 

available to enable customers to develop custom power monitoring and optimisation solutions on 

developer.disguise.one. [42] 

Site-Level System Monitoring 

A similar framework was used to create a remote, automated power monitoring setup using Tapo 

P110 WiFi-enabled power monitors. These monitors exposed data over the network on scrapable 

endpoints, allowing automation of power data collection on devices without internal profiling 

capability. This technique was used to characterise the power consumption of LED volumes - an 

extension of the initially stated aims - providing readings of XR stage power usage and further 

allowing realistic and distributed analysis. The architecture of the L2 stage media server and LED 

https://developer.disguise.one/


 

 

© 2025 Society of Motion Picture & Television Engineers® (SMPTE®)                                                                          8 

 

volume monitoring is shown in Figure 2. The “L2 Stage” is described in the following XR Stage 

Evaluation section. An independent setup was defined to use this integrated monitoring system 

to conduct explicit tests on XR workloads. The broad system architecture is visible in Figure 2. In 

practice, this setup comprised a single output machine (in-house VX4+) in conjunction with a 

Brompton S8 processor and 36 DB2.6 V2 LED panels. [43,44]. 

Figure 2: L2 stage media-server and LED volume monitoring architecture (representative) 

 

XR Stage Evaluation 

A structured test was designed to get readings from the LED panel and output VX4+ in several 

states. The test sequence is illustrated in Table 2. An initial baseline test with no content being 

displayed (black screen) was conducted, followed by single colour tests (R, G, B, W) at various 

brightness levels (0-100%) with 5-minute durations for each level. This test sequence was 

repeated twice, while varying only the light intensity as set on the Brompton Tessera S8 LED 

processor between 500 nits and 1000 nits maximum. 1000 nits is the practical maximum for most 

XR stages, as described by the Disguise Support team, and the additional 500 nits test allows us 

to cover a greater range of intensities on the panels (from 1W25% at 125 nits to 2W100% at 

1000).  
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Figure 3: Site-level monitoring on QA platform, metrics collected from network SMCs via new API 

 

Table 2: Full test sequence 

Color Test Time (mins for each 

brightness setting) 

Brightness Setting (% 

set in designer software) 

Global Maximum (nits 

set on LED processor) 

Black 

(none) 

5 25, 50, 75, 100 NA 

White 〃 〃 500 

Green 〃 〃 500 

Red 〃 〃 500 

Blue 〃 〃 500 

White 〃 〃 1000 

Green 〃 〃 1000 
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Red 〃 〃 1000 

Blue 〃 〃 1000 

 

The input power of the content output VX4+ machine was measured during this test; however, 

we observed an error with the PSU sensor and determined that the results were spurious, and 

hence did not report them.   

Invasive Energy Monitoring and Granular Energy Estimation 

While dedicated media solutions developed in the previous Section for XR workflows incorporate 

SMC to monitor power consumption using on-board sensors, multiple research publications have 

identified inaccuracies with on-board sensors. Power monitoring using SMC is also infeasible for 

bespoke elements within production pipelines. We investigate the accuracy of on-board and on-

device sensors in practical systems to characterise their accuracy, develop methods to capture 

energy consumption in a granular fashion and establish the groundwork for granular energy 

consumption modelling in post-production pipelines.  

To characterise on-device power sensors, we develop an invasive power measurement system 

and instrument a model server architecture with different computing elements (CPU, GPU, 

FPGA). Subsequently, the power consumption from each element is characterised using different 

workflows in a professional compositing environment, using tasks that are mapped to these 

specific resources. Combining this power profiling with low-level instruction profiling (using tools 

such as Intel VTune), we develop a granular energy estimation tool that uses the correlation 

between low-level performance counters signatures for specific tasks and the power draw 

signatures to predict the energy consumption of the specific task independently.  

Hardware-based power measurement 

A DC monitoring system is developed that can monitor power consumption on systems that do 

not feature an SMC (most general workstations). Two sensor options are provided to measure 

current consumption directly off the power lines that connect to the CPU and GPU:  contactless 

split-core hall-effect sensors and a miniature coreless magnetic current sensor (TLI4971). 

Contactless clamp-on sensors allow current measurement without interrupting or modifying the 

main circuit. Unlike clamp-on sensors, the TLI4971 needs the main circuit to be broken to pass 

current through its internal rail. 

For acquiring the data, we evaluated two options: the integrated 10-bit ADC on the Arduino, which 

supports a maximum of 10K samples per second, or a dedicated high-speed 10-bit MCP3008 

ADC that supports a peak rate of 200K samples per second. The latter was interfaced over the 

available SPI interface on the Arduino device.   

The measurement chain is calibrated for the entire range of operation of the hall-effect sensors 

using calibrated loads, power supplies and measurement probes in TCD, using TTi EL-R Series 
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Digital Bench Power Supply readings, BSIDE ACM 92 DC Current Clamp Meter and 

programmable loads. The sensors are then instrumented into a model workstation that uses a 

high-end Intel processor and NVIDIA GPUs.  The specification of the measurement system is 

listed in Table 3.  

Table 3: Specifications of the invasive measurement system based on hall effect current transformers. 

Granular energy estimation model for CPUs 

As mentioned, a key challenge of existing energy estimation/prediction models is their inability to 

isolate the task from background activity while estimating the energy cost. To this end, we 

developed an energy profiling model that can extract the low-level parameters specific to the task 

under consideration and use a lightweight learning model to estimate the energy overhead. To 

achieve this, we use Intel’s VTune profiling framework to invoke the task under consideration and 

extract the low-level metrics associated with this task. The extracted VTune profiling data for each 

application is aggregated and averaged over multiple runs to create an instruction-level signature 

for each application. Simultaneously, the invasive hardware measurement system records the 

power consumption at a high sampling rate to capture power peaks and troughs, generating a 

unique power signature for the task. We profile a set of media applications through Foundry’s 

NUKE tool, using internal plugins, custom graph operations and open source applications from 

Cattery, Foundry’s community framework, simultaneously generating the power consumption 

profile for each of these tasks. Together, they form an energy-instruction dataset, which we used 

to train a random forest model to establish the correlation between task patterns and power 

consumption signatures. A random forest regressor with 100 decision trees was chosen as this 

provided the best results for our training and test datasets generated from the profiling tasks. For 

validating the model, we use an unseen set of tasks within NUKE, invoked through the VTune 

profiler to generate the low-level signature data, which is then fed as input to the estimator. The 

results are compared against baseline measurements from the invasive hardware monitor to 

evaluate the estimation accuracy across different tasks.  

Results and Discussions 

In this section, we first discuss the observations from the non-invasive end-to-end monitoring 

framework that can be deployed in production-ready environments, focused on the PMBus 

interface and external modelling of LED volume power. Figure 3 shows the results of the site-

Rated Input 25A, 30 A, 200 A 

Input measurement range 45A, 200A 

Rated output 2.5 ± 0.625 V 

Sampling frequency 10 K samples/second, 

200 K samples/second 

Sensitivity of the sensor 20.8333 mv/A, 3.125 mv/A,48 mV/A 
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level monitoring on the QA platform, displaying the metrics collected from network SMCs for the 

system described in Figure 2. Initially, RS PRO Energy Meters were used to validate internal PSU 

measurements and moved toward TAPO P110 Wifi enabled meters for stage measurement.  

Figure 3 shows the results from in-house servers as well as power supply monitors (TPLink P110 

devices) that track the 9 DB2.6 Infiled LED panels.  

LED Panel Characteristics 

Monitoring the power consumption of an entire LED volume presents significant challenges. LED 

walls are a primary energy consumer in virtual production, and their power draw is content-

dependent. The lack of standardised energy reporting protocols across the heterogeneous 

hardware from different manufacturers complicates efforts to build accurate energy models. This 

section details a characterisation of a specific LED volume to establish a baseline methodology 

without access to detailed diode characteristics or the functional impact of LED processors such 

as the Brompton S8 [45]. 

Initial power consumption analysis of the DB2.6 S8 V2 LED panels based on the architecture 

(shown in Figure 2) is illustrated in Figure 4. The analysis revealed patterns across different 

colours and brightness levels. Unexpected discrepancies were found in power consumption 

between theoretically equivalent brightness levels from the analysis of white content between the 

500-nit and 1000-nit maximum tests. This discrepancy can be observed in Figure 4, where at 500 

nits maximum, white input power does not correspond to 50% brightness (white value) at 1000 

nits, which was the assumption.  

This discrepancy arises from the sRGB colour space [46] employed by display systems, which 

incorporates a non-linear transfer function to match human visual perception. The sRGB standard 

applies a gamma correction of approximately 2.2 to map between linear light intensity and the 

encoded digital values. To accurately correlate power consumption with actual light output, the 

following methodology was implemented: 

(1) Convert the fraction f from sRGB colour back into linear intensity by applying the inverse 

gamma correction (𝑓2.2), which transforms the perceptually-uniform software setting back 

to actual light intensity. 

(2) Multiply that linear intensity by the max nits setting configured on the LED processor (500 

or 1000 nits in our case) to determine the luminance. 

(3) Use this "Corrected Nits" value, which better reflects actual photometric light output for 

power consumption analysis, as LED power draw correlates with actual luminance rather 

than software-encoded values. 

This analysis revealed that a software intensity setting of 50% produces approximately 22% of 

maximum brightness (since 0.5 raised to the power of 2.2 equals approximately 0.22), and 

achieving 50% actual brightness requires a software intensity setting of approximately 73.5%. 

Power consumption correlates more closely with actual light output than with software intensity 

settings, which can be seen in the greater linearity of the transformed brightness values in Figure 

4. From our tests, we observe that setting a panel brightness to 50% in software does not reduce 
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the power consumption by 50% of the peak consumption, but rather to approximately 22%, 

indicating a non-linear relationship where power scales with actual luminance rather than encoded 

values. This also points to our prior discussion that the frame mapping to the panel is effectively 

a black box, and the practical difficulties in characterising the exact behaviour of the LED 

processing pipeline in relation to the diode outputs, as this information is withheld by the 

manufacturers. 

 

Figure 4: LED volume power vs. brightness, showing sRGB correction for white values 

 

The corrected curves for all colours (along with the greyed-out original curves) based on the Test 

pattern (defined in Table 2) can be observed in Figure 5. There is clearly some non-linearity in 

the 500 nit test in the behaviour of the Red, Green, and Blue colours, though White seems to 

more consistently conform to the sRGB colour space. 

As access to the problem-space is limited - considering limited resources in modelling for XR 

pipeline hardware outside of Disguise products - the scope of this study is limited in its further 

analysis, and only rough coefficients to approximate colour behaviour at differing LED processor 

brightness levels can be provided [45]. 

An extension of this work that would be enabled by a wider variety of maximum brightness level 

tests, allowing the full characterisation of the setup to provide predictions of DB2.6 power usage 

given a matrix of pixel values, or an input frame. This could serve as the basis for a framework 
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for characterisations of additional LED panels, and thus the prediction of power consumption for 

a larger variety of XR setups. 

Figure 5. LED volume power vs. brightness, showing sRGB correction for all colours 

 

Implications 

Monitoring and understanding sources of power consumption can provide environmental and 

cost-saving benefits in the short term. Based on this study’s methodology for system monitoring 

and subsequent cost optimisation, the overall XR system draw can be predicted using panel 

characteristics, allowing better capacity planning in the long term. The continued expansion of the 

XR pipeline scope and complexity will show increasing power demands and highlight the need 

for precise, real-time monitoring to inform more efficient in-panel and pipeline hardware choices 

[47]. 

As a result of the instrumentation of the Disguise in-house XR stage, it was found that the stage 

was left on during weekends and that a screensaver was playing during every weekday. This 

amounted to ~6.51 kWh draw per 9 panels each weekday, dropping to ~2.8 kWh weekend-day 

usage. Based on these measurements, yearly power consumption was around ~7,936 kWh for 

the whole L2 stage. 
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Figure 6: Comparison of previous L2 stage power consumption and optimised consumption 

Considering that the stage was not permanently in use, a smart power-monitoring app was used 

to schedule time off over the weekend and regulate it during the week. By transitioning to this 

setup, yearly power consumption was reduced from ~7,936 kWh to ∼3,224kWh, or roughly 59.4% 

as illustrated in Figure 6. Beyond operational benefits, the original annual carbon footprint of 

around 1,436 kgCO₂e for the L2 stage dropped by ~583 to around 853 kgCO₂e. 

Our observations on the test platform can be adopted by users to examine their practices, 

specifically with respect to LED panels, where turning off the panels when not required saves 

significantly more energy than switching to a dark image. As such, while the implemented 

optimisations reduce overall power draw significantly, the usage of the P110s and Tapo’s 

monitoring app will have to be disseminated for the effects to scale. In summary, collecting real-

time metrics through the P110s and our new SMC Power API allowed Disguise to achieve cost 

and environmental savings without impacting operational capabilities. Table 4 captures the overall 

savings, which were estimated by adopting this flow in a Disguise test setup.  

Table 4: Overall savings achieved through the energy-aware optimisation 

Total Annual Consumption (original setup) ~7,936 kWh 

Total Annual Consumption (optimised setup) ~3,224 kWh 

Annual Energy Savings ~4,712 kWh (≈59.4%) 

Overall Carbon Reduction from ~1,436 kg CO₂e down to ~853 kg CO₂e 

(saving ~583 kg CO₂e) 
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Evaluating the accuracy of on-chip and on-device sensors 

To understand the limitations of on-device sensors and vendor-provided APIs, we ran a set of 

benchmarking applications using Foundry’s NUKE, using in-built example designs, custom node 

graphs and user-provided graphs through Foundry’s open-source community network, Cattery. 

The tasks were mapped to CPU or GPU, with energy profiled through vendor tools such as 

NVIDIA-SMI. Simultaneously, the invasive energy monitoring module was attached to the GPU 

power lines from the PSU and the 12V board supply to capture the power delivered over the PCIe 

interface. Figure 7 shows the GPU utilisation and power consumption for a selection of NUKE 

tasks, measured through NVIDIA-NVML and NVIDIA-SMI interfaces when executed on an RTX 

3080-Ti device on a standard Dell Workstation. We also benchmarked different resolutions for 

each task to push the resource utilisation on the GPU. Each task is run over a thousand times to 

ensure there are limited OS-level or interface (PCIe)-level biases to the measurements, and the 

‘reported’ energy consumption and resource utilisation were averaged over these runs. The out-

of-band energy monitoring tool is used simultaneously to log energy consumed by monitoring the 

GPU power lines. The key observation is that for compute-intensive tasks, the compute and 

memory utilisation, and thus the energy consumption, are impacted by the image resolution. A 

key observation in Figure 7(b) is the overshoots observed at different resolutions, hinting at 

sampling inaccuracies and/or the sensitivity of the measurements.  

 

Figure 7: Analysis of GPU utilisation and GPU power (a) Plot of GPU and memory utilisation measured using 

NVIDIA tools across a set of representative NUKE plugins at different resolutions (b) Reported energy 

consumption across tasks for different resolutions 
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Figure 8: Comparison of the ‘reported’ power consumption against the measured power consumption for a 

set of representative NUKE plugins. 

Figure 8 shows the comparison of the ‘reported’ power consumption from on-chip sensors and 

the measured power from the invasive sensors across different ranges of power consumption on 

the GPU. It can be seen that the on-chip sensors are deviating from the measured power 

consumption in all tasks, consistent with observations from previous research.  

CPU energy estimator benchmarking 

To characterise the energy estimator, we implemented multiple graph sequences on NUKE to 

provide unseen visual processing workflows. The estimation tool predicts the average power 

consumption as well as the maximum and minimum power consumption for the runtime of the 

task. Figure 9 shows the comparison of the predicted power consumption values (average, 

minimum and maximum) from the initial version of the energy estimator tool compared to the 

average, minimum and maximum power consumption measured by the invasive sensors. The 

NUKE tasks were set to execute on an Intel i9-10900KF CPU in a standard Dell Workstation. It 

can be observed that the minimum and average predictions have high correlation with the 

measured values, while the peak estimates show some deviation from the measured values in 

some cases. We are currently investigating the outlier cases for the peak power prediction to bring 

it in line with the minimum and average predictions. An interesting observation is that the power 

consumption estimated by the tool is not affected by the presence of other computing loads on 
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the system (e.g., another task in the background), which is a unique ability of this tool compared 

to other solutions such as RAPL. Figure 10 shows the impact of running a NUKE graph firstly in 

isolation and subsequently in the presence of a background task (CPU stress) on our test setup. 

It can be observed that the additional load on the CPU results in our benchmark task consuming 

slightly lower power (with a slightly longer runtime) and is in line with the predicted power 

consumption when the task was executed in isolation. In the case of RAPL, the tool estimates the 

total CPU package power consumption, limiting its applicability for energy-driven task 

optimisations. 

 

 

Figure 9: Comparison of the ‘estimated’ power consumption by the CPU energy estimator tool against the 

measured power consumption and predictions from RAPL for a set of representative NUKE plugins. 
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Figure 10: Comparison of the estimated power consumption by the CPU energy estimator tool against 

predictions from RAPL when the NUKE task is run in isolation versus the case where background tasks are 

active.  

CONCLUSION  

This paper presents two complementary methods for tracking the energy consumption of post-

production and XR workflows, taking into account both computational and display components. 

An end-to-end framework is developed to characterise run-time energy consumption of individual 

servers and display components in an XR workflow, in addition to a granular invasive 

measurement system and an energy profiling tool that can provide insights into task, algorithm or 

device-level energy consumption. The key aim is to arm users and developers with these tools to 

aid in developing approaches for energy optimisation,  environmental saving and cost reduction 

for media production pipelines. Our results show that the energy-awareness in the case of end-

to-end virtual production pipelines can be used to develop automations that can reduce the overall 

energy consumption and carbon footprint of XR setups. Similarly, granular energy profiling of 

tools, invasive or predictive, can enable pathways for design-time optimisations to be explored for 

enhancing the processing algorithms, and/or platform configurations for improving the energy 

overheads of the algorithms.  

In the future, we aim to expand the end-to-end workflow and automations further by improving 

the monitoring capabilities, developing a better understanding of display systems through 

extensive energy consumption-based characterisation and expanding the granular profiling flow 

for other computing resources.  
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