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Abstract
Denoising is a core operation in modern video pipelines. In codecs,
in-loop filters suppress sensor noise and quantisation artefacts to im-
prove rate-distortion performance; in cinema post-production, de-
noisers are used for restoration, grain management, and plate clean-
up. However, state-of-the-art deep denoisers are computationally
intensive and, at scale, are typically deployed on GPUs, incurring
high power and cost for real-time, high-resolution streams. This pa-
per presents Real-Time Denoise (ReTiDe), a hardware-accelerated
denoising system that serves inference on data-centre Field Pro-
grammable Gate Arrays (FPGAs). A compact convolutional model
is quantised (post-training quantisation plus quantisation-aware
fine-tuning) to INT8 and compiled for AMD Deep Learning Proces-
sor Unit (DPU)-based FPGAs. A client-server integration offloads
computation from the host CPU/GPU to a networked FPGA service,
while remaining callable from existing workflows, e.g., NUKE, with-
out disrupting artist tooling. On representative benchmarks, ReTiDe
delivers 37.71× Giga Operations Per Second (GOPS) throughput
and 5.29× higher energy efficiency than prior FPGA denoising
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accelerators, with negligible degradation in Peak Signal-to-Noise
Ratio (PSNR)/Structural Similarity Index (SSIM). These results indi-
cate that specialised accelerators can provide practical, scalable de-
noising for both encoding pipelines and post-production, reducing
energy per frame without sacrificing quality or workflow compati-
bility. Code is available at https://github.com/RCSL-TCD/ReTiDe.
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1 Introduction
Image denoising is a classic ill-posed problem with applications
in video compression [Brenig and Timofte 2025], cinematic post-
production [Bled and Pitié 2024], camera and smartphone imaging
pipelines [Wang et al. 2024], and medical imaging [Demir et al.
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2025]. In video compression, denoising reduces frame entropy, en-
abling more efficient encoding and lower bandwidth usage. In cine-
matic post-production, it is essential to clean raw footage before
editing and grading. In smartphone imaging, denoising mitigates
the higher noise levels inherent to small sensors. Inmedical imaging,
it improves diagnostic clarity by suppressing acquisition noise.

In recent years, image denoising has shifted from classic meth-
ods [Bled and Pitie 2022] based on analytical priors, such as regu-
larisation [Combettes and Pesquet 2004; Malfait and Roose 1997;
Mallat 1989], wavelet-based denoisers [Combettes and Pesquet 2004;
Malfait and Roose 1997; Mallat 1989], and nonlocal collaborative
filters [Buades et al. 2005; Coupé et al. 2008; Gilboa and Osher 2009;
Mahmoudi and Sapiro 2005; Wang et al. 2006], including the widely
used BM3D algorithm [Dabov et al. 2007, 2009], to data-driven deep
learning approaches [Guo et al. 2019; Gurrola-Ramos et al. 2021;
Heinrich et al. 2018; Liu et al. 2018; Qin et al. 2020; Wang et al. 2020;
Zamir et al. 2021; Zhang et al. 2017a, 2018] capable of restoring im-
age details that are otherwise irretrievably lost. While these modern
methods generally outperform traditional filters, they often come
with substantially higher computational costs, with state-of-the-art
transformer architectures [Dosovitskiy et al. 2020; Liang et al. 2021;
Liu et al. 2021; Vaswani et al. 2017] capable of employing hundreds
of millions of trainable parameters.

Although research on general-purpose FP32 GPU-accelerated
models continues to advance, studies on energy-efficient hardware-
accelerated quantised denoising models in this field are limited.
Studies have shown that, with appropriate modifications, quantised
neural networks can achieve comparable performance with sig-
nificantly reduced overhead [Han et al. 2016]. FPGAs are an ideal
offloading platform for many compute-intensive tasks, including
video denoising, due to their latency and power efficiency. Existing
efforts of FPGA-accelerated denoising have mainly focused on opti-
mising classical bilateral filters [Dabhade et al. 2017; Gabiger-Rose
et al. 2013; Spagnolo et al. 2024; Wen et al. 2024], whereas research
on accelerating quantised deep learning–based denoising models re-
mains largely underexplored. Recently, studies have demonstrated
that deploying deep neural networks such as DnCNN on FPGAs can
outperform CPU and GPU implementations in terms of through-
put and energy efficiency [Kang et al. 2024; Tu et al. 2024]. These
approaches rely on specialised quantised convolution Intellectual
Property (IP)s based on algorithms such as Winograd fast convolu-
tion, which reduce the number of multiplications through matrix
transformations and are particularly effective for specific kernel
sizes (especially 3×3). However, such fixed architectures are less
suited to advanced models and lack highly parallel pipelined sched-
uling. Their intermediate results require high-bit storage, which
constrains both throughput and energy efficiency.

While post-production workflows now offer FP32 GPU accel-
erated models, such as The Foundry’s catalogue (CATTERY) of
deep-learning models [The Foundry Visionmongers Limited 2025],
the advantages of quantised neural network models on FPGAs (in
terms of throughput and energy efficiency), particularly for inten-
sive media stream processing, have never been incorporated. To
address this, we propose an end-to-end video denoising frame-
work that enables professional users to offload denoising tasks to
cloud-based FPGAs via a simple interface, achieving technological
decoupling and high-efficiency, low-power video denoising.

The main contributions of this paper are as follows:

• We use Post-Training Quantisation (PTQ) to convert FP32
models to INT8 and fine-tune the model with Quantisation-
Aware Training (QAT), while maintaining image quality,
delivering substantial gains in throughput and energy effi-
ciency with negligible PSNR loss.

• We enhance the NUKE–FPGA interface by enabling the plu-
gin to handle larger data chunks, thereby fully utilising PCIe
bandwidth. This allows the NUKE plugin to invoke a net-
worked FPGA-based denoising service for real-time use with-
out disrupting the artist workflow.

• The quantised ReTiDe-Net achieves denoising quality com-
parable to popular FP32 baselines. We evaluate its perfor-
mance across multiple benchmarks, covering both colour
and grayscale images.

• To the best of our knowledge, ReTiDe is the first open-source,
colour, blind, hardware-accelerated denoiser.

The remainder of this paper is organised as follows. Section 2
reviews the background and related work, including image noise
characteristics, recent advances in AI-based methods, and prior
research on FPGA-based denoising. Section 3 presents our pro-
posed Client-Server denoiser integration framework, detailing the
quantised denoising model and deployment strategies. Section 4 dis-
cusses the experimental results, comparing the performance of our
model with state-of-the-art methods on both colour and grayscale
image denoising tasks. Finally, Section 5 concludes the paper.

2 Background and Related Works
2.1 Noise in Digital Photography
Although digital camera technology continues to advance, the quan-
tum nature of light imposes a fundamental noise floor in every
image. Due to quantum uncertainty, the arrival of photons at dis-
crete photowells follows Poisson statistics, leading to unavoidable
fluctuations in the measured photon counts from one photowell to
another. This phenomenon, known as photon noise [Beenakker and
Schönenberger 2003; Schottky 1918, 2018] (or shot noise), originates
outside the sensor’s silicon and defines the minimum achievable
noise level in an image. Subsequent amplification of the captured
signal within the camera’s image signal processor (ISP) introduces
additional noise sources, including dark current noise [Yang and
Gamal 1999], fixed-pattern noise [Joseph and Collins 2001], and
read noise [Liu and Gamal 2001].

2.2 Popular Denoising Algorithms
Since its introduction in the late 2000s, BM3D [Dabov et al. 2007]
has remained a leading classical image denoiser. It performs collab-
orative filtering of non-local patches in two stages: first, grouping
similar patches via block matching, weighting them by similarity,
and applying hard thresholding in a transform domain to produce
a pilot estimate; second, refining the estimate with a collaborative
Wiener (or later, wavelet) filter. Variants of these algorithmic ap-
proaches remain in use, for example, Neat Video’s [GmbH 2024]
wavelet-based filter and Wiener-based denoisers in The Foundry’s
NUKE [Ltd. 2023] and the AV1 [for Open Media nd] in-loop filter.
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The DnCNN [Zhang et al. 2017a] demonstrated clear gains over
classical methods by employing an end-to-end 17-layer convolu-
tional network without downsampling. The network predicts the
residual image, which is subtracted from the input to produce the
denoised output. Its compact size (557k parameters) has contributed
to its enduring popularity. Subsequent models built on this founda-
tion, such as IRCNN [Zhang et al. 2017b] with dilated convolutions
and FFDNet [Zhang et al. 2018], which incorporates user-provided
noise levels and subsampled inputs.

The encoder–decoder architecture of U-Net [Ronneberger et al.
2015] enabled much larger denoising networks, improving quality
throughmulti-scale feature analysis and fusion via skip connections.
CBDNet [Guo et al. 2019] (4M parameters) extends U-Net for blind
denoising by incorporating a noise estimation subnetwork along-
side the noisy input. MWCNN [Liu et al. 2018] and MWRDCNN
integrate wavelet transforms into U-Nets, decomposing features
into high- and low-frequency components for more efficient pro-
cessing, and remain among the most competitive non-transformer
U-Net variants. Other widely used U-Net denoisers include MPR-
Net [Zamir et al. 2021] (20M parameters) and U2Net [Qin et al.
2020] (44M parameters), reflecting the architecture’s adaptability
across diverse denoising tasks.

Most recently, transformer networks [Dosovitskiy et al. 2020;
Khan et al. 2022; Vaswani et al. 2017] have surpassed the perfor-
mance of CNNs by introducing multi-headed attention layers with
global receptive fields, enabling them to capture long-range depen-
dencies beyond local convolutions. The Swin Transformer [Liu et al.
2021] established a general-purpose backbone by using hierarchical
attention layers that progressively downsample features and em-
ploy shifted windows to achieve global context, making end-to-end
image tokenisation and reconstruction computationally tractable.
This architecture has since inspired several denoising networks,
including SwinIR [Liang et al. 2021], Uformer [Wang et al. 2022],
and Restormer [Zamir et al. 2022].

2.3 Hardware Accelerated Video Denoising
Conventional denoisers are typically implemented on CPUs or
GPUs. However, their low throughput and limited energy efficiency
often become performance bottlenecks in practical applications.
Recently, a growing body of research has explored offloading both
classical [Dabhade et al. 2017; Gabiger-Rose et al. 2013; Spagnolo
et al. 2024; Wen et al. 2024] and deep learning-based image de-
noising algorithms [Kang et al. 2024; Tu et al. 2024] onto FPGAs
to improve performance. Compared to other platforms, FPGAs of-
fer superior throughput, energy efficiency, and reconfigurability,
making them an excellent offloading target for such tasks.

Research on optimising hardware-accelerated image denoising
algorithms is limited, with even recent work [Spagnolo et al. 2023,
2024; Wen et al. 2024; Xie et al. 2024; Yao et al. 2022] remaining
limited to traditional bilateral filter implementations. While these
examples do not compete with state-of-the-art GPU models in
terms of image quality, their simple implementations offer real-
time results. Studies have proposed accelerating the bilateral fil-
tering by simplifying the computation, approximating the filter
kernels, and increasing parallelism, thereby enhancing efficiency.
In [Dabhade et al. 2017], a constant-time bilateral filtering algorithm

using Gaussian polynomial approximation for the spatial kernel
was deployed on an FPGA. It enables larger kernels without addi-
tional resource overhead. Gabiger et al. [Gabiger-Rose et al. 2013]
achieved pipelined denoising on an FPGA through pixel group-
ing and clock-level acceleration. Wen et al. [Wen et al. 2024] re-
duced computational complexity via approximate computing and
improved throughput for high-resolution image processing using
a data prefetching strategy. Similarly, Fanny et al. [Spagnolo et al.
2024] improved energy efficiency using approximation techniques,
while preserving real-time and high visual precision.

Storing filter weights in lookup tables (LUTs) allows precom-
putation on hardware, reducing computational cost. Spagnolo et
al. [Spagnolo et al. 2023] approximated the coefficients of both
kernels using piecewise functions and encoded them as 7-bit un-
signed integers, storing them in reduced-size LUTs. For a 55 kernel,
their implementation achieved a maximum operating frequency
of 244 MHz and a throughput of 926.8 frames per second. In [Yao
et al. 2022], Yao et al. proposed a low-cost bilateral filter hardware
architecture incorporating a LUT-based divider and a parallelised
design, capable of processing 8-megapixel video at 30 frames per
second. The implementation of the Gaussian-Adaptive Bilateral
Filter (GABF) on FPGA further demonstrates that kernel approx-
imation and pipelining can effectively accelerate the denoising
process while maintaining real-time performance [Xie et al. 2024].

Recent advances in deep learning for image denoising have
shown that its performance has gradually surpassed traditional
methods, especially in detail processing, prompting researchers to
explore the use of Quantised Neural Networks (QNNs) in denoising
accelerators. In recent studies, Tu et al. [Tu et al. 2024] achieved
5.39× and 15.23× higher energy efficiency compared to GPU and
CPU implementations, respectively, by deploying TNet on a ZYNQ
FPGA (MZU03A-EG).Similarly, Kang et al. [Kang et al. 2024] im-
plemented a quantised DnCNN for denoising, achieving 1.9× and
26.2× energy efficiency improvements over GPU and CPU base-
lines, respectively. These studies highlight the potential of applying
QNNs for denoising on FPGAs. However, their primary focus lies
in inference efficiency, lacking a comprehensive denoising perfor-
mance evaluation. TNet-mini provides only limited case studies
of denoising on small-scale datasets, without presenting statistical
evaluations of denoising performance, such as PSNR comparisons
before and after denoising under different noise environments. L-
DnCNN reports PSNR results only on the small-scale grayscale
datasets BSD68 and SET12, and only for limited noise levels (15,
25, and 50), without evaluating noise reduction performance on
colour images or assessing the method on higher-quality datasets.
Furthermore, theseWinograd-based convolutional [Kala et al. 2019]
accelerators lack flexibility and have poor parallelism, leaving much
room for improvement in hardware performance. Additionally, nei-
ther implementation has been open-sourced.

To address these limitations, we implement the ReTiDe denoiser,
starting from the Cycle-GAN generator [Zhu et al. 2017], optimising
the network for hardware. Leveraging highly parallel DPU accel-
eration, the proposed approach further exploits the real-time and
energy-efficient characteristics. We purposely train blind models
for both colour and grayscale, unlike many existing models, which
require user input or the selection of a model trained within a cer-
tain noise band. The quantised denoisers are benchmarked under
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multiple noise levels for multiple datasets, demonstrating their gen-
eralisation capability. Finally, an end-to-end deployment interface
integrated with a server-accelerator architecture, bridging the gap
for professional image processing users in effectively harnessing
the advantages of hardware acceleration.

3 Methodology
3.1 Lightweight ReTiDe-Net
QNNs significantly reduce model size and improve execution effi-
ciency by converting parameters from FP32 to INT8 representations.
Moreover, mature FP32 operator libraries on GPUs can be mapped
to more efficient quantised implementations, where techniques
such as operator substitution (e.g., replacing multiplication with
shift operations) and operator fusion (e.g., convolution + batch
normalisation + activation) transform them into hardware-friendly
forms. This greatly enhances hardware efficiency and enables accel-
eration on fundamental hardware units such as the Digital Signal
Processing block (DSP). However, discrepancies between opera-
tors and the delayed implementation of quantised operators pose
challenges for mapping advanced model structures.

Considering this trade-off, we adopt the cGAN backbone [Zhu
et al. 2017], which has been demonstrated as suitable for hardware
conversion [Murphy et al. 2023], and adapt its U-Net generator
while discarding the discriminator. The structure of the model is
shown in Figure 2. Our generator is a symmetric encoder–decoder
with skip connections between matching stages. In contrast to the
original eight-stage design, we employ six downsampling stages,
each implementedwith a single strided convolution (no bias), paired
with a corresponding transposed convolution for upsampling. The
innermost block contains both a convolution and a transposed
convolution, forming the bottleneck. Skip connections are realised
by concatenating encoder features with the decoder output at the
same resolution. To improve hardware efficiency, all downsampling
layers employ LeakyReLU activations, which prevents gradient
vanishing and feature loss that could result from the absence of
negative values during the downsampling process. The LeakyReLU
coefficient 𝛼 = 0.1015625 is approximated as 26

256 on FPGA to enable
efficient fixed-point implementation using integer multiplication
and bit-shift operations instead of costly floating-point arithmetic.
This enables accurate mapping onto hardware Look Up Table (LUT)
operations, avoiding additional Block Random Access Memory
(BRAM) and DSP resource consumption, thus ensuring both quan-
tisation accuracy and high energy efficiency. During upsampling,
more regularised feature distributions allow the use of ReLU activa-
tions, which enhances decoding efficiency. Normalisation, dropout,
and residual connections are omitted to simplify the design and
reduce hardware cost, as these modules introduce additional mem-
ory access, control logic, and numerical operations that are less
hardware-friendly under low-bit quantisation. With this design
strategy, we train a grayscale and a colour model and convert both
to hardware to compare their performance to existing models.

3.2 Accelerator Quantisation and Deployment
The integration workflow of Vitis AI with NUKE is illustrated in
Figure 3. The AMD Vitis AI toolchain provides an end-to-end work-
flow for deploying quantised neural networks, bridging the gap

Conv2d-fix + LeakyReLU

64x128x128

128x64x64

32x32x256

16x16x512
8x8x512

4x4x512

3x256x256

Transposed-conv2d + ReLU

8x8x512
16x16x512

32x32x256

128x64x64

64x128x128

3x256x256

Skip-Connection

···

Figure 2: ReTiDe model structure.
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Figure 3: Diagram of the Vitis-NUKE integration.

between machine learning frameworks and FPGA-based deploy-
ment. Moreover, we also provide general client-server interfaces
for the integration of other software. Starting from FP32 model
descriptions written in popular frameworks such as TensorFlow
and PyTorch, the toolchain performs model quantisation and op-
erator conversion. The converted models can then be accelerated
on the Deep Learning Processing Unit (DPU), which is specifically
designed for convolutional and matrix-intensive workloads. By
mapping computation-intensive kernels directly onto dedicated
hardware engines, the toolchain not only reduces CPU overhead
but also maximises parallelism and memory bandwidth utilisation.
This hardware–software co-design significantly improves inference
throughput while simultaneously reducing power consumption.

After training a 32-bit PyTorch FP32 model, Post-Training Quan-
tisation (PTQ) is first applied to convert the original FP32 weights
and activations into an 8-bit fixed-point format. PTQ utilises rep-
resentative data during the calibration phase to capture the distri-
bution characteristics of activations, and then computes scaling
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factors and zero-point parameters to map continuous FP32 val-
ues into a finite integer range. This process substantially reduces
model storage overhead and bandwidth requirements, while also
allowing the model to better adapt to the hardware logic resources
of the FPGA. However, since quantisation inevitably introduces
rounding errors and numerical discretisation, model accuracy may
be affected. Only calibration is insufficient to adapt the model to
quantised inference.

QATwas introduced to mitigate the accuracy degradation caused
by quantisation. In the computational graph, we inserted quanti-
sation stubs and replaced some operators explicitly, resulting in a
trainable pseudo-quantised model that emulates quantisation ef-
fects during training. During forward propagation, these nodes
approximate computations for weights and activations, while in
backwards propagation, gradients are still computed using FP32
parameters. Through subsequent fine-tune retraining, the pseudo-
quantisedmodel adapts to perturbations introduced by quantisation,
thereby effectively restoring denoising performance. A small subset
of data is utilised for several forward passes to provide statistical
calibration when exporting the quantisation configuration. Finally,
the model is quantised and exported for further compilation.

The quantised denoising U-Net model and its quantised weights
are loaded into the Vitis AI Docker container for compilation, gen-
erating the DPU executable file (xmodel), which can be efficiently
mapped onto DPU acceleration tasks on AMD Alveo FPGA accel-
erator cards. The Alveo platform integrates high-bandwidth mem-
ory, fast interfaces, and dedicated management engines, providing
strong support for large-scale image processing and inference tasks
in data centre environments. To achieve seamless integration with
practical rendering workflows, we developed customised runtime
drivers that provide an interface between the DPU and the quan-
tised model. This allows the NUKE rendering system to perform
multi-threaded parallel invocations through the server-side process-
ing engine, thereby significantly accelerating the inference process
while maintaining high accuracy.

3.3 NUKE Software Interface Integration
The NUKE Machine Learning Plugin is a dedicated toolkit devel-
oped specifically for NUKE, enabling the incorporation of machine
learning models into its node-based VFX software environment.
To facilitate the integration of the noise reduction function, the
noise reduction service interface is encapsulated as a type of NUKE
plug-in. Additionally, by modifying the client prior to compila-
tion, the message buffer is extended to accommodate 8K-level data
streams. Distributed client hosts can transmit target data to des-
ignated servers for real-time rendering by invoking remote deep
learning processing services.

The server side consists of a host machine equipped with an
Alveo U50 server-level FPGA accelerator card. Figure 4 demon-
strates a processing flow from the original noisy image (𝜎 = 50) to
the denoised image with segmentation and corresponding paralleli-
sation. Upon receiving denoising requests initiated by remote or
local hosts, the incoming image or video stream is first processed by
a pre-processor, which segments and batches the media into stan-
dardised input formats suitable for the model. This also facilitates
parallel processing across multiple threads and DPU units.

DPU 0PE 0 PE 0 ···
···

PE n

DPU 1PE 0 PE 0 ··· PE n

DPU mPE 0 PE 0 ··· PE n
···

XRT & VART runtime
···

Hardware-accelerated inference platform

···

Figure 4: Pre-processing of large input images, parallel
hardware-accelerated noise reduction and post-processing.

The Vitis AI runtime and associated drivers are encapsulated
within a standalone Docker image, providing a stable runtime en-
vironment and reducing deployment costs. The denoising service
invokes the model driver to batch-process the denoising sequences
through the VART andXRT runtimes. These sequences are offloaded
to the FPGA accelerator via the high-speed PCIe interface in a mul-
tithreaded fashion. Subsequently, tasks are distributed in parallel
across multiple DPUs optimised for quantised convolution opera-
tions, where further parallelisation is achieved through multiple
processing elements (PEs). This hierarchical and dedicated parallel
processing architecture significantly enhances system throughput
and energy efficiency. The post-DPU output is then passed back
in reverse order, undergoing post-processing to restore the spatial
and temporal sequence before being delivered back to the client.

The user interface of the client is shown in Figure 5, where an
8K image denoising instance is used for illustration. The upper-left,
lower-left, and upper-right sections of the interface respectively
display the media to be processed, the node graph corresponding to
the workflow, and the connection configuration for the denoising
model server. Viewer1 and Viewer2 nodes are used to preview the
input and output of the denoising process, respectively. Additionally,
the processed results are stubbed for further access or inspection.
Internally, the MLClient2 node abstracts the complex hardware-
accelerated denoising model into a simple, callable function block
that can be easily integrated and triggered within a standard node-
based workflow in NUKE.While we integrate the (FPGA) client-side
functions through NUKE for our evaluation in this paper, the FPGA
client interface is developed to allow seamless integration into other
tools and workflows.

4 Results and Discussion
4.1 Dataset and Experimental Setups
The DIV2K [Agustsson and Timofte 2017; Timofte et al. 2017] and
LSDIR [Li et al. 2023] datasets are used for training. Together, they
comprise over 85,000 images, although we found that a subset of
4,000 images was sufficient for training the denoiser. These datasets



CVMP ’25, December 03–04, 2025, London, United Kingdom Li et al.

Figure 5: NUKE User Interface.

were selected for their high spatial resolution (2K and 4K) and their
greater diversity compared to classic computer vision datasets,
which typically contain far fewer images at lower resolutions and
are often limited to film photography content.

Training is performed on randomly cropped 256×256 patches
with a batch size of 64 for 10,000 epochs, using Gaussian noise
with noise levels ranging from 0 to 50. For each batch, patches
are sampled from the full-resolution images and augmented with
random horizontal and vertical flips and random rotations. Optimi-
sation is carried out using AdamW with an initial learning rate of
𝜂 = 10−4 and weight decay of 𝜆 = 10−2, with a cosine annealing
scheduler that decays the learning rate to zero and restarts every
5,000 batches. Model training is conducted in FP32 on an NVIDIA
A5000 GPU, using Python 3.13, PyTorch 2.1.1, and CUDA 12.2.

The grayscale versions of datasets BSD68 [Martin et al. 2001],
Urban100 [Huang et al. 2015] and Set12 [Dabov et al. 2007] are used
to evaluate the grayscale model and to fairly compare against the
existingmodels [Kang et al. 2024; Tu et al. 2024]. Colour benchmarks
are carried out on BSD100 [Martin et al. 2001]. In the QAT process,
we retrained the model for 30 epochs in a quantise-aware manner
with a learning rate of 10−8 to fine-tune and recover the PSNR.
Lastly, the Alveo-U50 FPGA was selected as the targeted platform.

To evaluate the performance of our denoising model against
existing FPGA-accelerated denoising approaches, we conducted
experiments from the following perspectives: (1) Comparison of de-
noising performance in grayscale image denoising with both state-
of-the-art FP32 models and FPGA-based deep-learning-accelerated
quantised denoising models. (2) Comparison of denoising perfor-
mance in colour image denoising under PTQ and QAT settings with
other state-of-the-art FP32 models. (3) Comparison of accelerator
throughput and energy efficiency with other denoiser models in the
literature, where these metrics have been quantified. Experimental
results demonstrate that our integrated solution not only introduces
a high-throughput and high-energy-efficiency quantised denois-
ing scheme into the NUKE workflow, but also achieves denoising
performance comparable to, or surpassing, that of state-of-the-art
FP32 and quantised models.

4.2 Grayscale Denoising Evaluation
Grayscale denoising involves only single-channel input, which im-
plies a reduction in the amount of input data available to the model.

This naturally leads to differences in performance compared to
colour denoising. To benchmark our model against existing de-
noising accelerators, we first evaluated denoising performance on
grayscale images. Experiments were conducted on the classical
BSD68 dataset and the higher-quality URBAN100 grayscale dataset,
comparing our model against existing FP32 models, particularly
FPGA-implemented quantised denoising models. For PSNR baseline
tests in grayscale denoising, and to remain consistent with prior
benchmarks, three noise levels with standard deviations of 15, 25,
and 50 were employed. The experimental results are summarised
in Table 1, with the PTQ and QAT models referred to as ReTiDe (P)
and ReTiDe (Q) respectively. From the data, it can be observed that
our quantised model achieves denoising performance close to that
of 32-bit FP32 models under 8-bit quantisation. Moreover, in high-
noise scenarios on the BSD68 dataset, our model outperforms the
existing denoising accelerator L-DnCNN.

Table 1: PSNR (𝑑𝐵) comparison of various algorithms for
grayscale image denoising.

Method BSD68 (gray) URBAN100 (gray)

15 25 50 15 25 50

FP
32

BM3D 30.95 25.32 24.89 31.91 29.06 24.45
FFDNet 31.45 28.96 25.16 33.76 31.41 28.09
IRCNN 31.46 28.79 25.11 33.08 29.62 24.53
DnCNN-20 31.60 29.14 26.20 33.76 30.19 19.34
SwinIR 31.76 29.10 25.40 33.44 30.43 25.47
ReTiDe 31.48 29.09 26.20 33.25 30.60 26.55

Q
N
N
s L-DnCNN 31.44 29.01 26.08 - - -

ReTiDe (P) 29.92 28.35 26.73 29.92 28.35 25.52
ReTiDe (Q) 30.94 29.23 26.73 30.20 28.46 25.61

While PSNR reflects overall denoising performance, it does not
capture all aspects of denoising; human visual perception and
preservation of image details are equally important. The Set12
dataset is a classical baseline dataset; however, due to its early ori-
gin, the ground truth itself contains deviations from clean images.
As shown in Figure 6(a), the ground truth images contain signifi-
cant noise. Therefore, this dataset is primarily used for a detailed
comparison of denoising results with other accelerators. Figure 6(b)
shows images corrupted with Gaussian noise at a level of 35, and
detailed denoising result comparisons are made between L-DnCNN
(c) and our quantised model (d). The results indicate that our model
significantly outperforms L-DnCNN in detail preservation, particu-
larly in facial features such as the mouth and hair contours, where
the features are retained with higher accuracy and realism.

The superior detail-preserving capability of ReTiDe compared
to L-DnCNN can be attributed to its encoder-decoder architecture
with skip connections. This enables the model to integrate high-
level semantic information while preserving fine details. In contrast,
DnCNN relies solely on deep convolutional stacking, which tends
to smooth fine details across multiple abstraction layers.
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Table 2: PSNR (𝑑𝐵) and SSIM comparison of popular denoisers for colour denoising on BSD100.

Method Blind/
Nonblind

BSD100 (colour)

5 15 25 35 45

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

FP
32

BM3D Nonblind 39.85 0.98 33.17 0.9223 30.16 0.8598 28.17 0.8007 26.62 0.747
DnCNN Blind 39.72 0.9728 33.46 0.9245 30.56 0.8711 28.62 0.8217 27.11 0.7766
FFDNet Nonblind 39.84 0.9788 33.65 0.9265 31.00 0.8772 29.37 0.8337 28.23 0.7958
IRCNN Nonblind 39.95 0.9789 33.41 0.9234 30.45 0.8678 28.43 0.8114 26.87 0.7578
ReTiDe Blind 39.46 0.9761 33.27 0.9205 30.65 0.8682 29.03 0.8224 27.89 0.7826

Q
N
N
s ReTiDe (P) Blind 32.94 0.8943 30.38 0.8414 28.95 0.8149 27.96 0.7941 27.06 0.7713

ReTiDe (Q) Blind 33.22 0.9425 31.03 0.9008 29.37 0.8576 28.14 0.8164 27.14 0.7811

Figure 6: Comparison of output results with other quantised
image denoising models under the noise level of 35.

4.3 Colour Denoising Evaluation
In addition to PSNR performance comparisons and detailed evalua-
tions against existing baseline denoising accelerators, we further
validate our quantised model ReTiDe on the colour dataset BSD100,
which is closer to real-world application scenarios. We conduct
baseline tests under Gaussian noise with finer-grained standard
deviations of 5, 15, 25, 35, and 45, comparing our method with other
state-of-the-art FP32 models. To better capture perceptual quality
from a user perspective, we also introduce the SSIM as an evaluation
metric. The experimental results are summarised in Table 2. No-
tably, under blind denoising (denoising without input of the type or
intensity of the noise), our model achieves performance comparable

to or exceeding that of classical and advanced FP32 models, while
QAT further improves both PSNR and SSIM metrics. In high-noise
conditions, such as a noise level of 45, our 8-bit quantised model is
only 1.09 dB and 0.0147 away from the best 32-bit FP32 model in
terms of PSNR and SSIM, respectively. In contrast, under low-noise
conditions, quantisation error becomes the dominant factor instead
of noise, resulting in relatively larger performance gaps compared
to FP32 models. We anticipate that hybrid-precision quantisation
could mitigate this issue in future work, though such an exploration
is beyond the scope of this paper.

To further assess the denoising detail preservation of our quan-
tised model on colour images, we present results in Figure 7, show-
ing clean, noisy, and denoised images under different noise lev-
els for the FP32 model, the PTQ model, and the QAT model. We
highlight regions with noticeable differences. Our observations
show that quantisation errors and quantisation-induced noise in-
troduced by PTQ can lead to inferior denoising performance, espe-
cially in relatively smooth background regions. However, QAT’s
quantisation-aware fine-tuning effectively alleviates this problem,
achieving denoising quality nearly identical to that of the FP32
model. These denoising examples further demonstrate the robust-
ness of our model on colour images across multiple noise levels.

4.4 Deployment Performance
We deployed the quantised model in the form of an xmodel on a
server equipped with an Alveo U50 FPGA, while the corresponding
FP32 models were deployed on a client equipped with an NVIDIA
A4000 GPU and an Intel(R) Core(TM) Ultra 7 265K CPU. Batch
denoising tasks were invoked via software Application Program-
ming Interfaces (APIs) to evaluate the runtime throughput and
energy efficiency of the quantised model. A one-minute warm-up
inference was first performed to stabilise device operation, after
which throughput was computed based on FPS and runtime perfor-
mance. GPU and CPU power consumption were measured using the
powerstat tool, FPGA power was measured with xbutil tool, by
recording the average power difference between the IDLE state and
active inference, and this value was adopted as the energy efficiency
metric. The experimental results are summarised in Table 3.

During this evaluation, FP32 models were run on the CPU and
GPU, while quantised INT8 models were run on the FPGA. The re-
sults demonstrate that our FPGA-based denoising inference achieves
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Figure 7: Denoising results of FP32 and quantised ReTiDe denoising models at different noise levels.

a throughput 37.71× higher than other FPGA-based baseline deep
learning denoisers, reaching 3,746.09 GOPS. Compared to the 0.033s
inference time of L-DnCNN [Kang et al. 2024], our model takes only
0.004s. This is attributed to our quantised inference optimisations
tailored for multi-DPU architectures and multi-threaded parallel ex-
ecution. Although TNet-mini [Tu et al. 2024] and L-DnCNN [Kang
et al. 2024] achieve strong performance through the use of the
Winograd algorithm and lightweight CNN structures, server-level
FPGAs typically provide more efficient architectures, including
high-bandwidth memory (HBM) and customizable DPUs. Although
the PCI Gen 3x4 interface on the xDMA for U50 limited its overall
bandwidth, Vitis-AI offers comprehensive system-level optimisa-
tions, such as operator fusion, layer-wise quantisation, and efficient
memory scheduling, which significantly improve energy efficiency
in practical deployment scenarios.

For energy efficiency, our approach surpassed baseline denoising
accelerators by 5.29×, reaching 203.59 GOPS/W. These results in-
dicate that our quantised denoising accelerator and its end-to-end
deployment scheme deliver a significant advantage in processing
large-scale denoising tasks with high energy efficiency compared
to conventional hardware platforms, including CPUs, GPUs, and
existing FPGA-based neural network denoising accelerators.

5 Conclusion
This work proposes a hardware-accelerated image denoising solu-
tion integrated into professional media processing software. The
end-to-end framework offloads computationally intensive denois-
ing tasks to a server-level FPGADPU acceleration platform. Through
multi-threading and multi-PE parallel quantised acceleration, the
framework significantly improves real-time denoising through-
put and energy efficiency. This approach bridges the gap between



ReTiDe: Real-Time Denoising for Energy-Efficient Motion Picture Processing with FPGAs CVMP ’25, December 03–04, 2025, London, United Kingdom

Table 3: Performance comparison across platforms: Fre-
quency, Throughput, Power, and Energy Efficiency.

Method Platform Thr.
(GOPS)

Power
(W)

Energy
Eff.

(GOPS/W)

L-DnCNN I7-7700HQ CPU 29.5 45 0.66
TNet-mini I5-12400F CPU 164.3 65 2.53
ReTiDe U7-265K CPU 770.2 42.1 18.30

L-DnCNN RTX 1070 GPU 1066.7 115 9.28
TNet-mini RTX 2080Ti GPU 1785.7 250 7.14
ReTiDe A4000 GPU 8,285.5 236.3 35.06

L-DnCNN MZU03A-EG FPGA 41.8 2.4 17.18
TNet-mini MZU03A-EG FPGA 99.3 2.6 38.51
ReTiDe Alveo U50 FPGA 3,746.1 18.4 203.59

the advantages of state-of-the-art quantised denoising models in
terms of real-time performance and energy efficiency, and the de-
mands of professional image media processing software for han-
dling computationally intensive media denoising tasks. For de-
noising performance, the proposed solution achieves results close
to advanced FP32 models for both colour and grayscale images.
Compared with existing FPGA-based deep learning denoising ac-
celerators, it achieves 5.29× and 37.71× improvements in energy
efficiency and throughput, respectively. This offers a new pathway
for accelerating and offloading professional image processing al-
gorithms. Future work will focus on further enhancing denoising
detail performance using mixed-precision quantisation on more
advanced models, exploring model sparsification to achieve even
greater energy efficiency, conducting systematic model ablation
studies to gain deeper insights into design trade-offs, and incorpo-
rating full pipeline overhead estimation and optimisation alongside
real-world image noise to improve the practical applicability of the
proposed solution.
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