
Bare-Metal RISC-V + NVDLA SoC for Efficient
Deep Learning Inference

Vineet Kumar, Ajay Kumar M, Yike Li, Shreejith Shanker†, Deepu John

School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
†Department of Electronic and Electrical Engineering, Trinity College Dublin , Dublin, Ireland

vineet.bitsp@gmail.com, ajay.kumarm@ucdconnect.ie, yike.li@ucdconnect.ie, shankers@tcd.ie, deepu.john@ucd.ie

Abstract—This paper presents a novel System-on-Chip (SoC)
architecture for accelerating complex deep learning models for
edge computing applications through a combination of hardware
and software optimisations. The hardware architecture tightly
couples the open-source NVIDIA Deep Learning Accelerator
(NVDLA) to a 32-bit, 4-stage pipelined RISC-V core from
Codasip® called µRISC V. To offload the model acceleration
in software, our toolflow generates bare-metal application code
(in assembly), overcoming complex OS overheads of previous
works that have explored similar architectures. This tightly
coupled architecture and bare-metal flow leads to improvements
in execution speed and storage efficiency, making it suitable for
edge computing solutions. We evaluate the architecture on AMD’s
ZCU102 FPGA board using NVDLA-small configuration and test
the flow using LeNet-5, ResNet-18 and ResNet-50 models. Our
results show that these models can perform inference in 4.8 ms,
16.2 ms and 1.1 s respectively, at a system clock frequency of
100 MHz.

Index Terms—System-on-chip, RISC-V, NVDLA, Hardware
accelerators, Deep learning, FPGA

I. INTRODUCTION

The growing computational demands of AI workloads and
the limitations of edge devices have driven the need for
specialized hardware accelerators. The rise of open-source
hardware has enabled the development of accelerators like
the NVIDIA Deep Learning Accelerator (NVDLA) [1]–[4].
NVDLA is a scalable, configurable, open-source inference en-
gine suited for edge AI. Its integration with RISC-V presents a
compelling solution for deep learning acceleration, as explored
in several studies.

Previous works [5]–[7] have examined the integration of
RISC-V with NVDLA to enhance deep learning inference
efficiency and flexibility. However, these studies primarily
focus on simulation-based implementations rather than real
hardware deployments, such as FPGAs. In [8], an FPGA-based
prototype incorporating multiple instances of NVDLA and a
RISC-V core is presented, but details on resource utilization
and integration methodologies are not provided. Additionally,
these studies [5]–[8] rely on a Linux-based kernel to execute
neural network models, requiring NVDLA drivers and result-
ing in significant software overhead. Few works [10]–[12]
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have demonstrated FPGA-based implementations of NVDLA
integrated with existing processor cores in SoCs, often utiliz-
ing Linux-based environments such as PetaLinux [10]. Other
works [13]–[16] have explored the use of NVDLA in various
research applications but without a focus on integrating the
accelerator with a RISC-V core. The reliance on Linux kernel
for executing deep learning workloads introduces additional
performance and storage overhead, making these solutions less
suitable for resource-constrained edge devices.

In this paper, we present the design of an open-source
NVDLA and RISC-V based SoC, which takes a neural net-
work model as input and executes it on NVDLA using RISC-
V assembly code without relying on a Linux kernel. More-
over, the SoC is demonstrated on FPGA by running neural
network models. Instead of using a Linux kernel-managed
driver stack, we leverage configuration files (traces) to directly
configure NVDLA’s registers, serving as an execution control
sequence. The official NVDLA release provides pre-generated
configuration files for basic hardware tests (e.g., sanity checks,
convolution, and pooling layer tests). However, no guidelines
are available on how these files were generated or how to
create them for arbitrary neural networks. This work addresses
this gap by proposing a methodology to generate configuration
files for arbitrary Caffe-based neural networks. These files are
then converted into RISC-V assembly code, enabling direct
hardware configuration of NVDLA. The key contributions of
this work include:

– Design of an SoC architecture based on NVDLA and
RISC-V and its implementation on FPGA

– Automated generation of configuration files and weight
extraction for arbitrary Caffe neural network models 1

– Tightly coupled hardware architecture and bare-metal
assembly-based execution, eliminating the need for a
Linux kernel and additional storage

For system design, we integrate NVDLA with a Co-
dasip µRISC V core and implement the design on an AMD
ZCU102 FPGA board. The system is validated using LeNet-5,
ResNet-18, and ResNet-50 neural network models.

1https://github.com/vineetbitsp/riscv-nvdla-sw
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II. RELATED WORKS

Several prior studies have explored the integration and
evaluation of NVDLA within different computing environ-
ments, primarily focusing on simulation-based approaches and
Linux-kernel based FPGA implementations. Gem5-NVDLA
[6] serves as a valuable tool for analyzing design trade-
offs and evaluating NVDLA’s performance in a simulated
environment. However, this work is limited in scope, as it does
not support the small configuration of NVDLA (nv small) [4].
Gonzalez and Hong [7] conducted a comparative study of
the NVDLA and Gemmini accelerators within the Chipyard
framework, assessing their respective advantages for deep
learning workloads. While insightful, this work is framework-
specific, restricting its applicability to Chipyard users.

Farshchi et al. [5] investigated the integration of NVDLA
with RISC-V-based SoCs using FireSim, a cycle-accurate sim-
ulation platform, to evaluate performance in object detection
tasks. However, their study is limited to simulation-based
analysis and does not address the practical challenges of
FPGA-based deployment or a custom ASIC design. Notably,
their simulation assumes an unrealistic NVDLA operating
frequency of 3.2 GHz—equivalent to the CPU clock—due to
FireSim’s constraints, whereas in practical FPGA implemen-
tations, NVDLA operates at frequencies below 100 MHz [8].

Giri et al. [8] proposed an open-source embedded system
platform for agile heterogeneous SoC design and demonstrated
FPGA-based prototypes incorporating multiple instances of
NVDLA alongside the Ariane RISC-V 64-bit processor core.
However, their work does not provide details on FPGA re-
source utilization or integration methodologies.

To the best of our knowledge, all prior works [5]–[12]
require a Linux kernel to configure and operate NVDLA. In
contrast, our work employs bare-metal assembly programming
to directly configure NVDLA registers for a given neural
network. Furthermore, our implementation supports both small
and full configurations (nv small and nv full) of NVDLA.

III. THE PROPOSED SYSTEM

This section outlines the architecture of the proposed SoC,
followed by detailed software and hardware development in
the subsequent section. Fig. 1 presents the software generation
workflow, which converts a trained neural network model
into RISC-V assembly code and a corresponding weight file.
As this process is model-specific and performed only once,
it is executed offline using NVDLA’s virtual platform (VP)
in conjunction with the software development methodology
described in Section IV-B.

Fig. 2 illustrates the architectural design of the proposed
SoC. The system integrates the NVDLA accelerator with a
µRISC-V core through a system bus, an arbiter, and a custom
NVDLA wrapper. The system bus—comprising an internal de-
coder and arbitration logic—enables communication between
the µRISC-V core and two memory-mapped slave devices: the
NVDLA engine and DRAM-based data memory. Given the
shared access to data memory, an arbiter manages potential

Fig. 1. The proposed system and software development flow.

conflicts between the core and NVDLA. The NVDLA wrap-
per encapsulates the accelerator hardware alongside interface
bridges and a data width converter to address mismatches
between the µRISC-V and NVDLA interfaces. Specifically,
an AXI data width converter connects the NVDLA’s 64-bit
data backbone (DBB) interface to the 32-bit data memory.
The µRISC-V core employs an AHB-Lite interface for access
to both program and data memory. Communication with
NVDLA’s configuration space bus (CSB) requires an AHB-
Lite to APB bridge, leveraging the existing APB-to-CSB
adapter provided by the NVDLA package. The AHB-APB
bridge, available as an open-source ARM design, facilitates
this integration. Furthermore, an AHB-Lite to AXI bridge
enables connectivity between the core and AXI-compliant
data memory. The system bus decoder assigns distinct address
spaces to each slave device (NVDLA and DRAM) to ensure
efficient memory-mapped communication.

IV. METHODOLOGY

A. Hardware Development Workflow

1) NVDLA Hardware Generation: Parameterized Verilog
code from the official NVDLA GitHub repository [17] is
used to generate hardware configurations via the hardware
tree build process, as outlined in the documentation [4].

2) System Integration: The NVDLA was integrated with a
RISC-V processor using Codasip Studio. A custom wrap-
per component was developed to encapsulate the NVDLA
core, interface bridges, and data-width converters, ensur-
ing seamless compatibility. The system bus, arbiter, and



Fig. 2. The system-on-chip.

memory were interconnected through Codasip Studio’s
testbench construct to generate synthesizable RTL,
which was subsequently imported into Vivado design
suite (Fig. 2). The system bus decoder allocates two
dedicated address spaces for the slave devices:
• NVDLA: Address range 0x0 -- 0xFFFFF, covering

all configuration register addresses of the NVDLA
• DRAM: Address range 0x100000 --
0x200FFFFF, providing access to 512 MB of
DRAM data memory

This memory mapping enables the RISC-V processor to
program the NVDLA using its standard load and store
instructions for writing configuration registers and read-
ing their status, eliminating the need for custom RISC-V
instructions. The arbiter component coordinates DRAM

Fig. 3. NVDLA virtual platform.

access between the NVDLA (via its DBB interface) and
the RISC-V processor (via its AHB interface), ensuring
mutual exclusion and efficient memory utilization. This
tightly coupled hardware interface enables bare-metal
assembly programming for neural network execution.

3) Simulation and FPGA Prototyping: Behavioral simulation
was performed in Vivado using RTL from the previous
step along with Vivado IP cores for bridges and convert-
ers, while software binaries and neural network weights
were loaded into memory. After successful simulation,
the design was synthesized and deployed on the FPGA
board, utilizing the onboard DDR memory for input and
weight storage. Various DNN models were executed to
evaluate system performance.

B. Software Development Flow
The software flow generates RISC-V machine code and ex-

tracts neural network weights from a Caffe model (Fig. 1). The
Github repository1 provides Python scripts, Linux commands,
and detailed instructions for generating bare-metal RISC-V
software through the following steps:

1) Execution on Virtual Platform: The Caffe model is
compiled using the NVDLA compiler and executed
on NVDLA’s VP, which provides a cycle-accurate co-
simulation environment using QEMU and SystemC [4].
Interface-level transactions (CSB, DBB) are logged dur-
ing execution (Fig 3).

2) Configuration File Generation: A Python script processes
the VP log file by extracting lines containing the keyword
nvdla.csb_adaptor. Each entry represents a register
transaction, categorized as read or write based on the
iswrite flag:
• Read operations (iswrite=0) are converted into
read_reg commands, which store the expected reg-
ister values.

• Write operations (iswrite=1) are converted into
write_reg commands, specifying the target register
address and the corresponding data value.

The generated command sequence constitutes the config-
uration file, which is subsequently converted into RISC-
V assembly code. The assembly code is compiled into
machine code using the RISC-V core SDK in Codasip
Studio and loaded into program memory for execution.

3) Weight Extraction: To extract neural network weights, the
python script filters VP log entries containing the key-
word nvdla.dbb_adaptor. Each entry corresponds
to a data transaction:
• Read operations (iswrite=0) indicate memory

fetches, which correspond to weights.
• Write operations (iswrite=1) specify addresses and

values being written to memory.
Finally, duplicate address entries in the weight file are
deleted by retaining the first occurrence, as they are the
original weights.

1https://github.com/vineetbitsp/riscv-nvdla-sw



Fig. 4. Set-up to test our SoC (Vivado block design of overall system set-up).

TABLE I
FPGA RESOURCE UTILIZATION (AMD’S ZCU102 EVALUATION BOARD)

Major Components
CLB LUTs CLB Regs CARRY8 F7 Muxes F8 Muxes CLBs BRAM

Tiles
DSPs

(FPGA) (274080) (548160) (34260) (137040) (68520) (34260) (912) (2520)

Overall System Set-up (Fig. 4) 96733 102823 1825 3719 1133 19898 323.5 39

MIG DDR4 8651 10260 56 164 0 1754 25.5 3

AXI SmartConnect 5546 7860 0 0 0 1137 0 0

Our SoC (Fig. 2) 81986 83659 1762 3555 1133 17025 298 36

nv small NVDLA 74575 79567 1569 3091 1048 15734 66 32

uRISC V core 6346 2767 173 419 67 1297 0 4

Program Memory 241 6 0 45 18 148 232 0

TABLE II
EVALUATION OF OUR SOC CONTAINING NV SMALL NVDLA (FPGA

IMPLEMENTATION RESULTS)

Model Layers Input Model
Size

Proc. Time
@100MHz

Proc. Time
@50MHz [8]

LeNet-5 9 1×28×28 1.7 MB 4.8 ms 263 ms

ResNet-18 86 3×32×32 0.8 MB 16.2 ms NA

ResNet-50 228 3×224×224 102.5 MB 1.1 s 2.5 s

TABLE III
EVALUATION OF OUR SOC CONTAINING NV FULL NVDLA (SIMULATION

RESULTS)

Model
Input
size

Model
size

Number of
clock cycles

Processing time
@100 MHz (ms)

LeNet-5 1x28x28 1.7 MB 143188 1.4

ResNet-18 3x32x32 813.5 KB 324387 3.2

ResNet-50 3x224x224 102.5 MB 26565315 265

MobileNet 3x224x224 17 MB 22525704 220

GoogleNet 3x224x224 53.5 MB 40889646 408

AlexNet 3x227x227 243.9 MB 35535582 355

V. EVALUATION AND TESTING

This section presents the performance evaluation of the
proposed SoC, including its FPGA implementation and testing
with standard neural network models. Initial functional valida-
tion was performed via behavioral simulation using standard
NVDLA test traces such as sanity, convolution and memory
tests available from the NVDLA Github repository. These
were translated into RISC-V assembly and used to verify the
correctness of the integrated SoC design.

To support larger models, external DRAM was connected
to the SoC through a DDR4 memory controller (MIG DDR4),
and is initialized via the ARM core of the Zynq UltraScale+
MPSoC on the ZCU102 board. This configuration enables
access to 512 MB of DDR4 memory from the programmable
logic. The system architecture was implemented in AMD
Vivado, with a high-level interface diagram shown in Fig. 4.
The Zynq core initializes the DRAM with both the weight file
and input image. At any given time, the DRAM is connected
either to the Zynq core or the SoC using an AXI SmartCon-
nect, which functions as a multiplexer. Additionally, an AXI
Interconnect is placed between the SoC and MIG DDR4 to
reconcile frequency mismatches, since the SoC operates at 300



MHz while the DDR4 runs at 100 MHz. The complete block
design was synthesized and deployed on the FPGA.

The SoC was successfully tested with standard deep learn-
ing models, including LeNet-5, ResNet-18, and ResNet-50.
During execution, the DRAM is preloaded with weight and
image files in .bin format. The RISC-V program memory,
implemented using FPGA block RAMs, is loaded with ma-
chine code generated from the configuration file in .mem
format.

While Table I shows the FPGA resource utilization for
the complete system set-up, our SoC, and its major com-
ponents, Table II reports the execution times at a system
clock frequency of 100 MHz. The execution speed outperforms
previous work, where NVDLA was integrated on a 64-bit
RISC-V–based platform, as shown in the table. Table III
presents simulation results for the nv_full configuration of
NVDLA, including total cycle counts and processing times
at 100 MHz. Although the nv_full configuration delivers
higher performance than nv_small, it is an enormous design
and does not fit on most FPGAs, including the ZCU102
FPGA board used in this work. For this device, the LUTs
overutilization was quite substantial for nv_full as observed
during synthesis.

The nv_small configuration supports only INT8 preci-
sion, while nv_full additionally supports FP16 computa-
tions. The models included in the Table III shows computation
times with FP16 precision. The performance comparison of
ResNet-50 on both configurations highlights that nv_full
is substantially faster, as it integrates a larger number of
MAC units. A limitation of this work is that the nv_small
configuration currently supports only a limited set of models,
primarily due to the lack of INT8 calibration tables. Future
work will address this limitation to broaden model support.

FUTURE WORK

Future development will focus on extending model support
for the nv small configuration to include additional deep
learning models such as MobileNet, GoogleNet, and AlexNet.
Two promising directions are:

1) Generating INT8 calibration tables required by the
NVDLA compiler, which are not currently provided but
are partially described in the NVDLA GitHub documen-
tation [17].

2) Integrating the ONNC compiler [18] to generate
NVDLA-compatible loadable files from ONNX models,
enabling broader deployment through execution on the
NVDLA VP.

VI. CONCLUSION

This work presents a custom SoC integrating the NVDLA
accelerator with a RISC-V processor, implemented and vali-
dated on an FPGA platform. The current design leverages the
nv small configuration, with the flexibility to support nv full
by modifying parameters such as the AXI interface width (e.g.,
from 64-bit to 512-bit). The SoC operates without the need for
a Linux kernel, enabling a lightweight, standalone execution

model ideal for edge AI applications requiring low latency and
constrained resources. FPGA synthesis results demonstrate the
feasibility of this design on low- to mid-range devices.
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