
1

Simopt-Power: Leveraging Simulation Metadata for
Low-Power Design Synthesis

Eashan Wadhwa & Shanker Shreejith
Department of Electronic and Electrical Engineering, Trinity College Dublin

Dublin, Ireland
{wadhwae, shreejith.shanker}@tcd.ie

Abstract—Excessive switching activity is a primary contributor
to dynamic power dissipation in modern FPGAs, where fine-
grained configurability amplifies signal toggling and associated
capacitance. Conventional low-power techniques – gating, clock-
domain partitioning, and placement-aware netlist rewrites –
either require intrusive design changes or offer diminishing
returns as device densities grow. In this work, we present Simopt-
power, a simulator-driven optimisation framework that leverages
simulation analysis to identify and selectively reconfigure high-
toggle paths. By feeding activity profiles back into a lightweight
transformation pass, Simopt-power judiciously inserts duplicate
truth table logic using Shannon Decomposition principle and
relocates critical nets, thereby attenuating unnecessary transi-
tions without perturbing functional behaviour. We evaluated this
framework on open-source RTLLM benchmark, with Simopt-
power achieves an average switching-induced power reduction
of ≈9% while incurring only ≈19% additional LUT-equivalent
resources for arithmetic designs. These results demonstrate that
coupling simulation insights with targeted optimisations can yield
a reduced dynamic power, offering a practical path toward using
simulation metadata in the FPGA-CAD flow.

Index Terms—Simulators, Power, FPGA, ASIC, Synthesis,
Compilers

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) have emerged as
critical components in modern digital systems, offering flexi-
ble hardware reconfigurability, rapid prototyping capabilities,
and optimised parallel execution. As these devices increas-
ingly permeate various application domains – from embedded
systems to high-performance computing – power efficiency
and reduction in switching activity have become paramount
design considerations. Switching activity, closely correlated
with dynamic power dissipation, significantly impacts FPGA
reliability, performance, and overall system longevity. FPGA
design tools play a pivotal role in managing and minimis-
ing this switching activity through optimisation algorithms
and resource allocation strategies during synthesis, mapping,
placement, and routing phases. Dynamic power in FPGAs
arises predominantly from switching activity, with factors such
as logic transitions, clock distribution networks, and signal
routing contributing significantly.

Despite the growing sophistication of FPGA tools, ef-
fectively managing switching activity remains a substantial
challenge, intricately tied to the increasing complexity of
devices, shrinking technology nodes, and demanding perfor-
mance constraints. For decades, efforts to curb dynamic power

in FPGAs have centred on fine-grained techniques such as
dynamic voltage and frequency scaling (DVFS) [1], power
gating of idle regions [2], and clock gating based on tog-
gling statistics—strategies [3] now embedded in most modern
FPGA-CAD tools. Yet these approaches focus exclusively on
controlling activity after a design is committed to hardware;
they do not exploit insights available during simulation. In ev-
ery hardware designer’s workflow, functional simulation serves
solely to validate correctness and is subsequently discarded,
leaving a rich trove of toggle-rate information untapped for
power optimisation.

This paper addresses this gap by analysing the efficacy
of modern FPGA synthesis and placement-and-routing tools
in minimising switching activity through simulations, thereby
optimising dynamic power usage. The specific contributions
of this work are outlined below:

• We extend an existing simulation infrastructure to harvest
fine-grained switching-activity metadata, yielding per-
signal toggle estimates across the entire design.

• We feed these activity profiles into a new truth-table
decomposition engine that explicitly balances power re-
duction against the accompanying area overhead.

• We validate the approach on cutting-edge, large-
language-model-generated Verilog suites (RTTLM [4])
alongside the standard VTR benchmarks [5], confirming
significant power savings with acceptable area trade-offs.

We present a modest switching-induced power reduction of
≈9% while incurring only ≈19% additional LUT-equivalent
resources for arithmetic designs. While providing empirical
insights into the impact of tool-driven optimisations, evalu-
ate their trade-offs against performance metrics, and suggest
future directions for FPGA tool development to achieve en-
hanced power-aware computing.

II. PRELIMINARIES

A. Verilog-To-Routing and Simulators

The open-source Verilog-To-Routing [6] toolflow has been
a key enabler for research into CAD optimisations for FPGAs
and ASICs. It benefits from open-source community backing
and seamless integration into custom and vendor toolflows,
while delivering competitive power, area, and performance
results for FPGA/ASIC designs [7]–[9]. Many researchers
have expanded the original VTR flow with custom exten-
sions for novel architecture exploration, enhanced routing



2

Fig. 1: A standard Yosys synthesis flow, where HDL is synthesised to a gate-level netlist, followed by the generation of a
BLIF logic netlist.

algorithms and others. In [7], the authors enhanced the ex-
isting VTR flow for supporting a custom architecture which
replaces expensive logic (connection, switching) blocks. The
authors in [8] implemented a fine-grained optimisation in-
side Berkley’s ABC [10] on Intermediate representations (IR)
graphs to lower the area incurred by designs mapped through
VTR. The VTR backend is organised as a modular collection
of toolsets, each implementing a distinct stage of the FPGA
CAD flow—from logic synthesis through packing, placement,
routing, and timing analysis—thereby enabling an end-to-
end, open-source evaluation framework [6]. This openness has
empowered researchers to prototype and evaluate cutting-edge
optimisation algorithms that drive measurable gains across
critical performance metrics. A recent example is MapTune
[11], which proposes a reinforcement learning framework for
guided mapping of cells during the synthesis step, reducing
delay and area by a considerable amount. Simopt [9] in-
troduces simulation metadata into the FPGA-CAD synthesis
flow, emitting lower latency designs for FPGAs. Using sim-
ulations in accelerating efficiency has also been studied in
other domains. Combinational equivalence checking of circuit
networks is accelerated by studying simulation patterns [12]
markedly reducing SAT-solver runtime and verification effort.
FPGA-Tidbits [13], a Chisel-based library generates fully syn-
thesisable RTL and employs Verilator for cycle-accurate co-
simulation, enabling rapid co-design and prototyping of area-
efficient FPGA accelerators . Previous research in simulators
however have never addressed the problem of reducing power
consumption in generated designs, which our work addresses.

B. FPGA netlist to placed design

Fig. 1 shows canonical front-end flow of how synthesis tools
input a Hardware-Description Language (HDL) snippet to
emitting a nelist. After parsing the HDL, a boolean network is
created which map arithmetic operators, muxes and compara-
tors to logic operations while having no knowledge of platform
specific cell libraries. This can then be directly mapped to gate-
level netlists, shown as (b) in Fig. 1 while incorporating gate-
sizing, and library patterns for k-input Look-up tables (LUTs).
The final step of netlist emission, (c) in Fig. 1, includes cell

libraries to map the gate-level netlist to capture the technology-
mapped boolean network. In our work we use the standard
open-source front-end for FPGA research flows - Yosys,
which parses into an internal RTL Intermediate Language
(RTLIL) representation, an equivalent of a boolean network.
A series of optimisations are performed on this internally
represented abstract tree, followed by mapping which replaces
the RTLIL primitives with ABC’s gate library to generate
out the gate-level netlist. It is then incrementally lowered
to a generic BLIF netlist through structural hashing and cut
enumeration implemented in Berkeley’s ABC. This netlist
containing LUT, FF and latch directives can then be fed into
placement tools for placing the design onto an FPGA platform.
Placement determines the physical coordinates on the FPGA
fabric contained in the design netlist. Placement typically is
directed by timing closure, dynamic power and congestion
factor. Modern placers integrate routability estimators that
penalize hot-spots of overlapping demand, while power-aware
heuristics redistribute high dynamic power consuming nets to
shorten high-activity wires and avoid thermal concentration.
However by this stage, there is very little a designer can
do to reduce switching activity for designs. Simopt-power
mitigates this issue by judiciously reducing the capacitance
associated with high-toggling signals in-turn reducing the
dynamic power consumption as we explain later in this work.
But before the resource mapping is solidified through synthesis
and the spatial arrangement finalised by placement, we first
turn to simulations to verify that a configured design meets
all functional and timing requirements before committing it to
hardware.

C. Simulation in Simopt

Simulations offer a virtual environment where designs are
exercised under stimuli, enabling early verification and cor-
rectness of functionality before any hardware resources are
committed. Although designers can choose from a range of
commercial and open-source simulators, these tools typically
fail to expose the internal metrics necessary to inform subse-
quent synthesis and placement stages.



3

In [9] however, authors introduced a Simopt framework
which have modified Verilator to extract simulation metadata
from a design to generate simopt-counters (shown in Fig. 2, as
the Protobuf-encoded Simopt dump). Simopt-counters tracks
number of times a simulated net is toggled for a given set
of input stimuli, which was later used by various Simopt-
backends. Authors demonstrated this framework by integrating
these counters into one such open-source framework, Yosys
to generate lower latency designs. However, their findings
only focused on one such backend and only combinatorial
circuits only. In our work, we re-use these simopt-counters as
switching activity estimates since they essentially give similar
counts to toggling activity of a net. We explain how we re-used
this framework in the following section III.

Fig. 2: How Simopt-Power integrates into the Simopt frame-
work. The red box indicates the step where the proposed truth-
table decomposition step is integrated.

III. SIMOPT-POWER

Power consumption on modern FPGAs is primarily com-
posed of static power and dynamic power, with the latter
contributed by the dynamic switching activity of the active
logic elements. Dynamic power on an FPGA can be captured
through the switching power equation

≈ α · C · V 2 · f

where C, V , f and α represent effective switch capacitance,
supply voltage, clock frequency and switching factor (i.e. the
average number of signal transitions per node of a circuit),
respectively. Dynamic power consumption optimisation thus
requires the tools to minimise the impact of each of these pa-
rameters where possible. V is a device-level parameter which
can have a significant impact on signal integrity, whereas in

Fig. 3: Simopt-power truth-table decomposed synthesis netlist
of the counter from Fig.1(b). The grey box indicates the
additional LUT logic added by the Simopt-Power framework
to reduce power.

high-performance designs, f should be as high as possible.
Prior research has explored the possibility of dynamic voltage
frequency scaling (DVFS) [14] and clock gating to optimise
power consumption at runtime using offline characterisation
of designs [14]. Our approach is to optimise the design-time
parameters α and C to minimise the power consumption on
the logic when deployed on the FPGA. By duplicating the
driving logic, each copy of the driving logic can be placed
physically close to a subset of the loads, reducing the wire
length to drive the logic to result in a smaller overall C, and/or
reducing the number of programmable interconnect switches
that the logic needs to pass through, resulting also in lower
overall C. The duplication of driving logic, as we also observe
from our results, typically results in an additional few µW’s,
which is outweighed by the drop in dynamic power [1]–[3].

To determine the signal toggle levels under actual input
conditions, the design is initially simulated with Simopt-
Verilator with a test fixture that replicates real-world data that
the system could observe. Simopt-Verilator records per-cycle
toggle counts, referred to as simopt-counters, for every signal
and register (entity). These activity profiles are serialised as
Protobuf-encoded metadata files and later parsed by Simopt-
Power, which uses the counters to drive its power-reduction
transformations. The simopt-counters tags each signal selected
in the design, and its value is incremented each time the signal
state toggles when the design is simulated using the Simopt-
Verilator framework To illustrate this flow, consider the simple
example in Fig. 1, where a free-running clock is fed as an
input clock clk for 512 ticks (Fig. 1(a)). The gate-level netlist
of the counter, shown in 1(b), uses a multi-bit vector q to
store the counter’s state whose bit position toggles at the clock
edge depending on the current state, and is individually tracked
by the corresponding simopt-counter. The internal next-state
wires, q next, q next r shown in Fig. 1(b) are also
tracked by separate simopt-counters. During the synthesis flow,
the relation between simopt-counters, Verilator’s intermediate
signal representations, and Yosys’s synthesised net names are
maintained by the Simopt-Verilator flow.

Once the simopt-counters are determined for each signal in
the design, this can be forwarded to the downstream processing



4

Algorithm 1: TRUTHTABLEDECOMPOSE – Shannon-
Decomposes a truth-table

Input: T – pointer to the truth table on the right cut
of size nright variables;

Cleft – indices of the nleft variables in the cut;
Cright – indices of the nright variables in the cut;
Result: T is replaced by the Shannon-decomposed

truth-table with positive and negative
co-factors.

1 if not Csimopt counter < simopt counters median then
2 return
3 end
4 for i← 0 to nright − 1 do
5 splitVar ← −1;
6 if Cright[i] /∈ Cleft then
7 splitVar ← Cright[i]; break;
8 end
9 if splitVar = −1 then

10 continue; // nothing to split
11 end
12 pos← index of splitVar in Cright;
13 nwords ← 2nright/(8 · sizeof(word));
14 allocate arrays T0,T1 of nwords words;
15 T0 ← SHANNONCOFACTOR(T, nright, pos, 0);
16 T1 ← SHANNONCOFACTOR(T, nright, pos, 1);
17 copy T1,T0 into T;
18 free T0,T1;
19 end
20 for i← 0 to nleft − 1 do
21 splitVar ← −1;
22 if Cleft[i] /∈ Cright then
23 splitVar ← Cleft[i]; break;
24 end
25 if splitVar = −1 then
26 continue; // nothing to split
27 end
28 pos← index of splitVar in Cleft;
29 nwords ← 2nleft/(8 · sizeof(word));
30 allocate arrays T0,T1 of nwords words;
31 T0 ← SHANNONCOFACTOR(T, nleft, pos, 0);
32 T1 ← SHANNONCOFACTOR(T, nleft, pos, 1);
33 copy T1,T0 into T;
34 free T0,T1;
35 end

logic within the mapping-placement-routing flow in Yosys,
captured in Fig. 2. The highlighted block in red in the flow is
the Simopt-power extension, which implements the truth-table
decomposition algorithm to determine logic duplication based
on the simopt dump from the simulation. In the traditional
Yosys flow, the RTL graph IR is structurally cleaned before
synthesising the logic using ABC to generate a final netlist
shown in Fig. 1(c). ABC performs iterative logic restructuring,
enumerating small graphs (cuts) and computes canonical truth
tables using Boolean-function hashing. These truth tables are
utilised during the technology mapping phase, where the

Algorithm 2: SHANNONCOFACTOR – Calculates
Shannon cofactor of truth-table

Input: Tsrc – pointer to the original truth table on n
variables;

n – number of variables;
p – position of variable to fix;
v – value to cofactor on (v ∈ {0, 1})
Output: Tdst – cofactor of Tsrc with xp = v

1 nwords ← 2n/(8 · sizeof(word));
2 for i← 0 to nwords − 1 do
3 Tdst[i]← 0;
4 end

; // Scan every minterm and check if
it matches xp = v

5 for m← 0 to 2n − 1 do
6 if bit m is set in Tsrc then
7 if (m≫ p) & 1 = v then
8 m′ ← remove bit p from m (collapse to

n− 1 vars);
9 set bit m′ in Tdst;

10 end
11 end
12 end

functions are packed into k-input LUTs or specific library
functions. Simopt-power introduces an additional decompo-
sition pass, described further in Alg. 1, to replace the existing
truth table pointers for nets that have high toggle rates with
an alternate one that further decomposes the logic to minimise
the logic loading. The net-level simopt-counter data extracted
from the simulation is thresholded using the median simopt-
counter value across the design to identify the logic signals
that need further decomposition. For signals with high activity,
the Shannon cofactors are calculated for the corresponding
truth tables using the Shannon decomposition function

f(x) = x f(1) + x f(0)

where the boolean function f(x) is decomposed into its
positive and negative cofactors with respect to x.

In Alg. 2, the Shannon cofactor of a Boolean function
with respect to a variable xp is computed by scanning all 2n

minterms of the original truth table (line 5) and selecting only
those for which xp = v holds (line 6-7). For each selected
minterm, the index is compressed by removing bit position
p to obtain a reduced (n − 1) variable representation (line
8), and the corresponding output bit is set in the destination
truth table T ∗ dst (line 9). This process yields the restricted
function f ∗ xp = v as a new truth table (lines 5–9), enabling
decomposition in truth-table-based logic optimisation. Cuts
introducing such unique variables are heuristically strong
candidates for splitting through Shannon decomposition as
they represent functional expansions that were not previously
factorised in the logic graph. These new variables correspond
to signal lines whose influence has not yet been resolved in
either subtree. As such, they typically exhibit higher switching
activity, since they inject additional functional control into the



5

resulting cut function. In Alg. 1, these variables are called
splitVar, and are explained in lines 4-11 for the right cut graph,
and lines 21-27 for the left cut graph.

The copy statement for truth-tables T1,T0 in line 17,33,
implements a contiguous-memory concatenation that rebuilds
a single, 2n−1 -bit truth table from its Shannon cofactors. Each
cofactor, T1 and T0, already holds the function’s values under
fixed assignments of 0 and 1, respectively, and thus contains
2n−1 bits (stored here as an array of nwords elements). Since
cofactors were computed with identical variable ordering for
the remaining n–1 variables, a simple block copy concatenates
the table without requiring further bit shuffling. The operation
merges the two half-tables into the full table, setting the stage
for subsequent synthesis steps without changing the function’s
semantics.

With the updated tables, the standard ABC flow resumes by
mapping the LUTs to a gate-level netlist for Yosys to generate
a BLIF netlist. With reference to Fig.2(b) the new netlist
would like Fig.3, with the additional decomposed netlists. For
implementing these designs on a commercial FPGA, these
netlists are imported as a black box into AMD’s Vivado tool
as an IP and subsequently, to generate the power reports for
estimating the dynamic power consumption of the toggle-
optimised design.

IV. RESULTS

In order to evaluate Simopt-power, we picked datasets
which contained sufficient sequential logic to measure power
benefits. This is because it is more complex to instrument
for switching-activity measurements and for formal reasoning
about state traversal (increasing toggle activity concentration),
whereas a purely combinational circuit toggles nearly every
gate on every evaluation deterministically and may not reap
any benefits from this framework. Since designs have to be
Simopt-Verilator and Simopt-Yosys compatible and need to
be sufficiently complex to have large sequential circuits, we
chose

• RTTLM dataset [4]: an open-source benchmark that poses
progressively complex hardware design tasks and scores
large-language-model outputs on syntax, functional cor-
rectness and implementation quality. Some of the RTL
circuits generated by the large language model are com-
plex and are syntactically valid for evaluating the Simopt-
Power framework

• Koios dataset [5]: Koios is an open-source benchmark
suite comprising of deep-learning accelerator circuits
that emphasise large, data-parallel, heterogeneous, and
deeply-pipelined designs, giving FPGA-architecture and
CAD researchers a realistic workload set for area, fre-
quency, and power studies.

We ran all the test suites by first generating a top-level
testbench for each of the test cases from a Python script. A
stimulus was chosen such that it toggles all the input bits of the
design a sufficient number of times, with respect to a toggling
input clock. This necessitated limited manual interpretation
(can be automated) by seeing how many times each of the
signals was roughly being referenced, giving them a higher

TABLE I: Power, area, and relative percentages when using
Simopt-Power (S.P. in the table) on RTLLM dataset

Benchmark Power (W) ∆P Area (LUTs) ∆A

w/o S.P. w/ S.P. (%) w/o S.P. w/ S.P. (%)

RTLLM-adder-32 0.428 0.415 3.0 102 119 16.7
RTLLM-adder-64 0.445 0.440 1.1 64 66 3.1
RTLLM-async-fifo 0.227 0.223 1.8 81 79 -2.5
RTLLM-ALU 1.483 1.315 11.3 751 1101 46.6
mult-pipe-8 0.376 0.373 0.8 133 127 -4.5
radix2-div 0.366 0.365 0.3 78 79 1.3
adder-16 0.416 0.409 1.7 32 40 25.0
mult-16 0.733 0.648 11.6 152 208 36.8
traffic-light 0.095 0.092 3.2 22 25 13.6
LIFO-buffer 0.141 0.140 0.7 27 28 3.7
freq-div-frac 0.054 0.053 1.9 7 9 28.6
fixed-pt-adder 2.800 2.750 1.8 100 106 6.0
fixed-pt-sub 2.250 2.210 1.8 95 100 5.3
adder-8 0.164 0.162 1.2 15 16 6.7
up-down-counter 0.361 0.319 11.6 22 38 72.7
calendar 0.145 0.144 0.7 44 46 4.5

TABLE II: Power, area, and relative percentages when using
Simopt-Power (S.P.) on Koios dataset

Benchmark Power (W) ∆P Area (LUTs) ∆A

w/o S.P. w/ S.P. (%) w/o S.P. w/ S.P. (%)

dla like 2850 2600 8.8 479,619 571,931 19.1
clstm like 1200 1100 8.3 201,945 235,509 16.9
deepfreeze 450 410 8.9 75,729 83,302 10.8
tdarknet like 950 870 8.4 159,873 199,841 25.6
bwave like 3100 2800 9.7 521,691 652,114 25.5
lstm 1631 1486 8.9 274,477 307,414 12.7
bnn 260 240 7.7 43,754 51,630 18.2
lenet 140 128 8.6 23,560 30,392 29.4
dnnweaver 1500 1350 10.0 252,431 323,429 28.2
tpu like 3550 3250 8.5 597,420 704,956 18.4
gemm layer 620 565 8.9 104,338 125,639 25.2
attention layer 2100 1890 10.0 353,403 392,277 11.5
conv layer 820 760 7.3 137,995 155,934 13.1
robot rl 170 155 8.8 28,608 31,469 10.0
reduction layer 110 98 10.9 18,511 20,952 12.9
spmv 80 72 10.0 13,463 16,425 22.3
eltwise layer 95 86 9.5 15,987 19,344 21.6
softmax 65 58 10.8 10,938 13,126 20.7
conv layer hls 720 660 8.3 121,167 153,882 27.1
proxy 55 50 9.1 9,255 10,551 14.2

toggling rate through the stimuli. This was done to reflect
real-world use cases and so that the Simopt-power is able to
maximise the power reduction.

We summarise our results for RTLLM in table I, where an
average of 5.1% power reduction, while having a high area
increase of 18.5%. This is primarily due to the simplicity
of the circuits, which contain relatively few modules in their
Verilog descriptions. As a result, they are more susceptible to
aggressive area overhead introduced by Simopt-Power, which
prioritises power reduction based on the given simulation
stimuli. Realising this, we use a much more complex dataset
for testing Simopt-Power. As shown in our results for the
Koios dataset in table II, we see an average of ≈9% decrease
in power with an increase of ≈19% in area. The high area
consumption in some cases (tdarknet like, bwave like accel-
erators), can be explained by the very wide, highly parallel
datapaths and deep pipelines rather than compact control logic
that the other accelerators of this dataset have. To lower
dynamic power, Simopt-Power inserts operand-gating, buffers,
and logic duplication on every bit of the high-toggle buses it
identifies. Because the affected signals span hundreds or even
thousands of bits, each gating or replication decision scales



6

linearly with bus width, inflating the LUT count by 20+%
overall. In contrast, the achievable power saving is bounded:
even after toggle-factor reduction, the remaining power is
set largely by the fixed interconnect capacitance and the
memories/DSP blocks that Simopt-Power cannot restructure
(can only do LUTs). The result is a ≈12% (average) drop
in dynamic power for these kinds of circuits, but an area
overhead. Future optimisations can be integrated into these
kinds of circuits by applying bit-level activity-suppression
techniques for such arithmetic-heavy circuits whose functional
correctness depends on parallelism of many entity-bits.

V. CONCLUSION AND FUTURE WORK

In this work, we presented Simopt-Power, which adds
additional logic through intelligent simulation-guided truth-
table decomposition during the synthesis mapping step. The
framework is able to reduce dynamic power while increasing
the LUT resource consumption slightly. We used RTTLM [4]
and Koios [5] datasets to verify this model’s benefit, and
circuits have a modest ≈9% gain, while increasing the area
consumption by about ≈19% increase in area. Future research
will focus on tightening the power-area trade-off exposed by
the Simopt-Power framework. First, we will refine the existing
cost model to account for wire-length–dependent capacitance
and routing congestion, enabling the optimiser to prune gating
or buffering decisions whose marginal power benefit is out-
weighed by LUT or interconnect overhead. Second, we will
explore open-source power estimators so that the process of
calculating Simopt-Power power numbers is easier. Finally,
we intend to extend the framework to heterogeneous fabrics-
leveraging DSP and BRAM resource gating, and to investigate
run-time reconfiguration that adapts dynamic activity suppres-
sion, ultimately aiming for higher dynamic-power savings with
lesser area growth across next-generation FPGA platforms.

REFERENCES

[1] V. Madala and G. K. Chellamani, “Energy efficiency of embedded
controllers through dvfs,” in 2024 Fourth International Conference on
Advances in Electrical, Computing, Communication and Sustainable
Technologies (ICAECT), IEEE, 2024, pp. 1–5.

[2] H. Jahanirad, “Dynamic power-gating for leakage power reduction in
fpgas,” Frontiers of Information Technology & Electronic Engineering,
vol. 24, no. 4, pp. 582–598, 2023.

[3] Y. Attaoui, M. Chentouf, Z. E. A. A. Ismaili, and A. El Mourabit,
“Clock gating efficiency and impact on power optimization during
synthesis flow,” in 2021 International Conference on Microelectronics
(ICM), IEEE, 2021, pp. 13–16.

[4] Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “Rtllm: An open-source
benchmark for design rtl generation with large language model,” in
2024 29th Asia and South Pacific Design Automation Conference (ASP-
DAC), IEEE, 2024, pp. 722–727.

[5] A. Arora, A. Boutros, S. A. Damghani, et al., “Koios 2.0: Open-source
deep learning benchmarks for fpga architecture and cad research,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 42, no. 11, pp. 3895–3909, 2023.

[6] M. A. Elgammal, A. Mohaghegh, S. G. Shahrouz, et al., “Vtr 9: Open-
source cad for fabric and beyond fpga architecture exploration,” ACM
Transactions on Reconfigurable Technology and Systems, 2024.

[7] K. Shi and L. Wang, “An open-source tool to model and explore
complex routing architecture for fpga,” in 2024 2nd International
Symposium of Electronics Design Automation (ISEDA), IEEE, 2024,
pp. 734–739.

[8] Y. Li, M. Liu, H. Ren, A. Mishchenko, and C. Yu, “Dag-aware syn-
thesis orchestration,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 43, no. 12, pp. 4666–4675,
2024.

[9] E. Wadhwa and S. Shreejith, “Simopt-simulation pass for speculative
optimisation of fpga-cad flow,” in 2024 IEEE International Conference
on Omni-layer Intelligent Systems (COINS), IEEE, 2024, pp. 1–6.

[10] B. L. Barzen, A. Reais-Parsi, E. Hung, et al., “Narrowing the synthesis
gap: Academic fpga synthesis is catching up with the industry,” in
2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE), IEEE, 2023, pp. 1–6.

[11] M. Liu, D. Robinson, Y. Li, et al., “Maptune: Versatile asic technology
mapping via reinforcement learning guided library tuning,” ACM
Transactions on Design Automation of Electronic Systems, 2025.

[12] C. Rizzi, S. Brunner, A. Mishchenko, and L. Josipović, “Simgen:
Simulation pattern generation for efficient equivalence checking,” in
2025 Design, Automation & Test in Europe Conference (DATE), IEEE,
2025, pp. 1–7.

[13] E. R. Jellum, Y. Umuruglu, M. Orlandic, and M. Schoeberl, “Fpga-
tidbits: Rapid prototyping of fpga accelerators in chisel,” in 2023 26th
Euromicro Conference on Digital System Design (DSD), IEEE, 2023,
pp. 153–160.

[14] S. Zhao, I. Ahmed, C. Lamoureux, A. Lotfi, V. Betz, and O. Trescases,
“A universal self-calibrating dynamic voltage and frequency scaling
(dvfs) scheme with thermal compensation for energy savings in fp-
gas,” in IEEE Applied Power Electronics Conference and Exposition
(APEC), 2016, pp. 1882–1887.


