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Abstract— Recent research has highlighted the vulnerability
of in-vehicle network protocols such as controller area networks
(CAN) and proposed machine learning-based intrusion detection
systems (IDSs) as an effective mitigation technique. However,
their efficient integration into vehicular architecture is non-
trivial, with existing methods relying on electronic control units
(ECUs)-coupled IDS accelerators or dedicated ECUs as IDS
accelerators. Here, initiating IDS requires complete reception of a
CAN message from the controller, incurring data movement and
software overheads. In this paper, we present SecCAN, a novel
CAN controller architecture that embeds IDS capability within
the datapath of the controller. This integration allows IDS to tap
messages directly from within the CAN controller as they are
received from the bus, removing overheads incurred by existing
ML-based IDSs. A custom-quantised machine-learning accelera-
tor is developed as the IDS engine and embedded into SecCAN’s
receive data path, with optimisations to overlap the IDS inference
with the protocol’s reception window. We implement SecCAN
on AMD XCZU7EV FPGA to quantify its performance and
benefits in hardware, using multiple attack datasets. We show
that SecCAN can completely hide the IDS latency within the
CAN reception window for all CAN packet sizes and detect
multiple attacks with state-of-the-art accuracy with zero software
overheads on the ECU and low energy overhead (73.7µJ per
message) for IDS inference. Also, SecCAN incurs limited resource
overhead compared to a standard CAN controller (< 30% LUT,
< 1% FF), making it ideally suited for automotive deployment.

Index Terms—Smart network controllers, Intrusion Detection
Systems, Quantised Neural Networks, Multi-layer Perceptrons

I. INTRODUCTION AND BACKGROUND

Most high-end vehicles today integrate over 50 electronic
computing units (ECUs) interconnected through different net-
work standards for incorporating safety-critical, comfort and
automation capabilities in a cost and energy-efficient manner.
CAN (and its variants) continue to be the most widely used
network protocol in automotive electric/electronic systems
owing to their low cost, flexibility, and robustness [1]. As a
broadcast-based shared-bus protocol with minimal overhead,
CAN has no built-in scheme for securing message exchanges
over the network or providing sender/receiver authentication.
Thus, any malicious node accessing the physical network can
easily observe, decode and tamper CAN messages [2].

To mitigate these vulnerabilities, researchers have explored
methods to detect and restrict malicious actors using intrusion
detection and intrusion prevention systems (IDSs and IPSs re-
spectively) [3]. Compared to rule-based and entropy-based IDS
systems, the generalisable and scalable nature of ML-based
IDS has made them ideally suited for embedded intrusion
detection in vehicular ECUs [4], [5], [6], [7], [8]. However, the
computational complexity of ML-based IDS is prohibitive to
software deployment on the ECU as the IDS task can consume
valuable time and resources required for the safety-critical and
real-time functions on the ECU. Hence, most practical IDS
integration schemes in the literature rely on complete ECUs
dedicated to IDS (GPUs, FPGAs, or microcontrollers) or
through a dedicated accelerator attached to the ECU. Figure 1
captures the different integration strategies proposed in the
literature. Case 1 in figure 1 shows the IDS integrated as
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Fig. 1: The figure illustrates conventional integration strategies
for CAN IDSs reported in the literature, and the proposed case
for embedding IDS within the controller.

a software task on an existing ECU, while case 2 shows a
dedicated IDS accelerator where the IDS could be deployed
as the lone software task on an ECU, GPU (edge device or
a standard GPU) or a microcontroller platform like Raspberry
Pi [9]. Case 3 shows a coupled accelerator, where the ECU of-
floads IDS to the accelerator on the same SoC once the packet
is received from the CAN controller. In all the above cases, the
CAN message has to be completely received by the controller
and subsequently read by the coupled ECU/processing element
before the ML model can perform IDS checks.

In this letter, we propose SecCAN, an extended CAN
controller that integrates an IDS accelerator into its receive
side datapath, as shown in figure 1 case 4. This critical design
choice allows the IDS accelerator to directly extract CAN bus
data (ID and payload) from within the receive path of the
CAN controller for overlapping IDS execution with the current
packet’s reception. Complementing this with a compact 4-bit
quantised multi-layer perception (QMLP) IDS model deployed
as an unrolled dataflow accelerator, SecCAN completely hides
the latency of IDS within the reception window of the current
CAN frame. This is a departure from existing ML-based IDS
solutions in the research literature, where IDS execution is
triggered after the message is transferred to the ECU from
the CAN controller. We evaluate SecCAN controller on a
Zynq Ultrascale+ platform with the ARM cores on the Zynq
device acting as the coupled ECU. The IDS performance of the
SecCAN controller is evaluated by replaying messages from
multiple datasets on the test platform. The key contributions
of the letter are as follows:
• We introduce a novel CAN controller architecture (SecCAN)

that seamlessly integrates IDS capabilities into the datapath
of the controller without affecting standard message flow,
thus being fully transparent to the ECU.

• A lightweight 4-bit QMLP model was developed and
dataflow optimised to generate the low-latency quantised
IDS (Q-IDS) accelerator integrated into SecCAN. The
model was trained and tested on two attack datasets [7], [10]
and achieved state-of-the-art binary classification accuracy

https://arxiv.org/abs/2505.14924v1
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Fig. 2: The figure illustrates the integration of the IDS within
the CAN controller. The red arrows show the standard datapath
and the purple arrows indicate the augmented path for IDS.

of 99.993% and 99.966% (average) across multiple attacks.
• We implement the SecCAN controller on an AMD Zynq

XCZU7EV FPGA to determine the latency, area and energy
benefits/overheads. The tests show that SecCAN enables
line-rate IDS capability with zero latency and zero soft-
ware overheads incurred by the ECU even at the highest
CAN data rates. Compared to dedicated IDS accelerators
such as on a Jetson Xavier GPU, SecCAN is significantly
more energy-efficient (34×) with the IDS implementation
in SecCAN incurring much lower latency (10.9×).
The datapath changes in SecCAN allows IDS to be fully

offloaded from the ECU, with clever overlapping of IDS with
the message reception from the CAN bus. This makes IDS
fully transparent to the ECU, effectively incurring zero latency
for the IDS and with zero change to existing software tasks, a
key difference to competing ML-based IDS methods [7], [11],
[12], [13]. To the best of our knowledge, this work presents
the first integration of an IDS operating in parallel with the
CAN controller’s datapath. We further openly release the im-
plementation of SecCAN to foster further research into smart
network interfaces at https://github.com/RCSL-TCD/SecCAN.

II. SECCAN ARCHITECTURE

A. Extending Datapath for IDS
The CAN controller implements the CAN protocol at the

logic level using functional blocks that perform bit-level
processing, data packaging/framing, error detection, and op-
tional message filtering functions. For our work, we utilise
an open-source register transfer level (RTL) implementation
of the CAN controller described in Verilog as our baseline
controller [14]. The CAN protocol is implemented in the
baseline CAN controller through the following modules: con-
fig registers, bit timing logic and bit processing.

The config registers module implements the AXI interface
to the ECU and incorporates a set of registers and frame
buffers to capture protocol configuration, status signals and
transmit/received messages. The memory-mapped registers
within the config registers module define command/control
functions for other modules as well as error-tracking and status
signals. At startup, the ECU configures the protocol registers
to set operating parameters such as bit-level timing (sampling
windows, clock prescaler configuration), interrupt configura-
tion, and message filtering for the receive path, among others.
Once active, a software task in the ECU writes up to 8 bytes
of data to be sent as a CAN frame into the transmit buffer,
and the controller attempts to transmit the payload based on
the configured arbitration priority. The status of transmission
is subsequently updated on the status register. When a CAN
frame is received from the bus, the message filter configuration

determines if it needs to be passed to the ECU or dropped by
the controller. Any frame to be passed upstream is written to
the receive buffer and an interrupt signal is generated (if not
masked), causing the ECU to read the received frame.

The bit timing logic module implements the bit-level tim-
ing and synchronization functions of the protocol and inter-
faces with the physical CAN bus. The bit processing module
processes the encoding/decoding of bits to/from the CAN
bus and implements the transmit, receive and error handling
functions. We extend the datapath within the bit processing
module to embed our 4-bit quantised MLP as the IDS (Q-
IDS) within the CAN IP, as shown in figure 2. The extension
brings together a set of control signals and the decoded
byte from the controller’s modules to the feature collection
logic that generates the input features for our IDS. The Q-
IDS IP is an AXI stream accelerator of our quantised MLP
generated using AMD’s FINN toolchain, starting from our
high-level Python model. We apply selective unrolling and
dataflow optimisations to optimise throughput and latency in
the generated IP.

The bit processing operation begins when a header is
detected on the bus and is indicated by the header detector
signal, marking a possible start of a new message on the CAN
bus. The IDS control logic asserts ids en to enable the feature
collection logic and the counter starts tracking the number
of data bytes written to the receive data register(s) (and also
to our feature collector FIFO through the datapath extension)
by monitoring the write flag signal. When the counter value
matches the data length code (DLC) of the current CAN frame,
the frame header and message are available in the feature
collection logic’s FIFO, and the data en signal is asserted
to begin the IDS operation. The new input feature vector
comprising (CAN ID + Payload) of current and previous
messages is subsequently transferred to the IDS IP. The feature
collection logic zero pads smaller-sized payloads to 8 bytes
to generate a uniform feature size for the IDS. This allows
us to replay the bus messages as-is during our evaluation
without pre-processing the dataset, faithfully replicating an in-
vehicle scenario. Once the feature vector is transferred, the
IDS processes the frame for potential attacks and asserts the
ids output ready signal on completion. This operation over-
laps with the CAN protocol checks, where the bit-processor
validates the CRC and error flags of the received frame, and
waits for the end-of-frame signal before transferring the valid
CAN message to the receive buffer (in config registers mod-
ule). The IDS output value is wired out of the bit processing
module to the top module, where a custom multiplexing logic
appends the IDS output to the received CAN message as it
is transferred to the receive buffer and subsequently read by
the ECU. Figure 3 illustrates the SecCAN operation using a
waveform, highlighting how the IDS operations overlap with
the CAN signalling checks (CRC, error flagging bit times).
Our optimised IDS implementation completes the inference
within this window, thus hiding this latency from the ECU.

B. Model & Dataset for training and testing

To arrive at our final QNN model’s architecture, we explored
different configurations with varying complexity (number of
layers and number of neurons in each layer) to find a model
that offers high inference accuracy at minimal complexity. We
use CAN ID + Payload information from each CAN frame as
the input feature for the model to perform binary classification.
We arrived at a 4-bit (weights/activations) quantised multilayer
perceptron model (MLP) as the chosen configuration for the
IDS, which provided the best validation accuracy during the
training process. The QNN model is trained using brevitas,

https://github.com/RCSL-TCD/SecCAN
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which is an open-source quantisation-aware training (QAT)
library for training neural networks [15]. The model was
trained for 200 epochs with the adam optimizer and lr set
to 0.0001. The model consists of 3 QuantLinear layers (input,
one hidden & output ; Linear layer equivalent in pytorch) with
{64, 32, 1} neurons at each layer, followed by QuantRelu
activations. Batch normalisation and dropout layers were used
to prevent overfitting during the training phase. The sigmoid
function at the output denotes the probability of the current
message being benign or malicious.

We used the open Car Hacking & survival analysis dataset
for training and testing the model [7], [10]. The datasets
contain CAN bus data acquired via the OBD port in an actual
vehicle, with attack messages injected in real-time, compiled
into a labelled set of normal and attack messages. We split
each dataset into 75:15:10 proportions for training, validation,
and testing.

III. EVALUATION & RESULTS

We generate the hardware configuration of the model using
AMD Vivado 2022.2, with the XCZU7EV device on the
ZCU104 development board as the FPGA platform. The CAN
controller is set to operate at maximum bitrate of 1 Mbps,
with a CAN clock frequency of 16 MHz. We evaluate the
4b-QMLP IDS model’s accuracy in detecting active injection
attacks and compare it to state-of-the-art approaches in the
literature. The 4b-QMLP model uses the same 16 MHz to
avoid clock domain crossing; however, it can be synthesized
for a much higher clock frequency (100 MHz) if required
at the cost of higher resource and energy consumption (see
sec. III-C). Additionally, we measure the inference latency in
hardware and analyse the trade-offs in resource and energy
utilisation that the controller incurs from this integration. For
measurements, we replay the attack messages either directly
from the ARM processor core (on the Zynq platform for
testing accuracy) or from a BRAM that replays CAN traffic
data (for quantifying latency and power).

A. Accuracy
We quantify the accuracy of the 4b-QMLP model in terms

of precision, recall & F1 scores and compare it against
state-of-the-art works in the literature, and across multiple
datasets. Our test split from the Car Hacking dataset in-
corporates 75,000 messages each from the DoS & fuzzing
attack datasets. The model achieves a binary classification
accuracy of 99.993% (11 misclassifications for 150,000 test
messages), Our test split from the survival analysis dataset

combines flooding, fuzzing, and malfunction attack vectors.
On this test set, our model achieves a classification accuracy
of 99.966% (25 misclassifications for 75,000 test messages).
Table I presents a comparison of our model with others pro-
posed in the literature for the two attack datasets, highlighting
that our approach matches or surpasses the performance of
competing methods.

B. Detection Latency
For real-time message tagging, the IDS must complete the

analysis of each message before the reception window is com-
pleted (end of error flags in CAN protocol). For a maximal-
length CAN message, the reception window Tmax can be
determined as Tmax = Tframe done − Theader detected, where
Tframe done & Theader detected marks the time at completion
of frame reception and valid header reception respectively.
Since our IDS uses header and payload as input features, the
analysis can only start once all data bytes are decoded from
the bus (indicated by data en signal). For CAN bus operating
at 1 Mbps, this time window can be determined as 37.376 µs;
hence, for real-time detection, the upper limit on IDS latency
(TIDS) must satisfy TIDS = Tframe done − Tdata en <
37.376µs. This relation holds for any data length at 1 Mbps

TABLE I: Inference accuracy (%) of SecCAN compared to
competing IDS schemes on both datasets.

Attack Model Precision Recall F1 % FNR

DoS
(Car
Hacking)

DCNN [7] 100 99.89 99.95 0.13
NovelADS [13] 99.97 99.91 99.94 -
TCAN-IDS [16] 100 99.97 99.98 -
GRU [12] 99.93 99.91 99.92 -
iForest [9] 95.07 99.93 97.44 -
4b-QMLP in SecCAN 99.99 99.98 99.98 0.02

Fuzzing
(Car
Hacking)

DCNN [7] 99.95 99.65 99.80 0.5
NovelADS [13] 99.99 100 100 -
TCAN-IDS [16] 99.96 99.89 99.22 -
GRU [12] 99.32 99.13 99.22 -
iForest [9] 95.07 99.93 97.44 -
4b-QMLP in SecCAN 99.99 99.97 99.98 0.03

Flooding
(Sur-
vival
Analysis)

XGBoost [17] 100 90 94.74 -
G-IDCS [18] 99.72 99.72 99.72 -
LSTM [19] - 100 100 0
4b-QMLP in SecCAN 100 100 100 0

Fuzzing
(Sur-
vival
Analysis)

XGBoost [17] 99.98 99.08 99.53 -
G-IDCS [18] 100 100 100 0
LSTM [19] - 99.95 99.96 0.05
4b-QMLP in SecCAN 99.98 99.50 99.74 0.5

Malfunction
(Survival
Analysis)

XGBoost [17] 99.92 100 99.96 -
G-IDCS [18] 100 99.64 99.82 -
LSTM [19] - 100 100 0
4b-QMLP in SecCAN 100 100 100 0



TABLE II: Resource utilisation on the FPGA for the standard
CAN controller (CAN-NC) & our SecCAN controller.

LUTs (%) FFs (%) BRAMs (%) LUTRAMs (%)

CAN-NC 887 (0.38%) 625 (0.14%) 0 (0) 18 (0.02%)
4b-QMLP 67902 (29.47%) 2007 (0.44%) 0.5 (0.16%) 61482 (60.42%)
SecCAN 68888 (29.90%) 2737 (0.59%) 0.5 (0.16%) 61500 (60.44%)

TABLE III: Comparison of SecCAN’s energy consumption per
inference with other IDS approaches proposed in the literature.

Model Platform Energy consumption
GRU [12] Jetson Xavier NX 1.77 mJ
QCAE [21] Zynq Ultrascale+ 2.09 mJ
MTH-IDS [11] Raspberry Pi 3 1.29 mJ
iForest [9] Raspberry Pi 4 390.6 µJ
SecCAN Zynq Ultrascale+ 73.7 µJ

CAN bus configuration. From our evaluation (both from sim-
ulation and hardware measurements), we observe a detection
latency of 36.5 µs at 16 MHz clock, allowing the SecCAN to
tag each message with an attack or benign flag before the
reception window of current message on the network ends.
Further, we observe a 10.9× reduction in latency for our
unrolled 4b-QMLP compared to an 8-bit implementation on a
Jetson Xavier, even with reception and message transfer times
excluded.

C. Resource & Energy Consumption
We report the resource consumption and energy numbers

of the SecCAN controller, compared to the standard CAN
controller in table II & III respectively. We can observe
that the IDS model contributes ≈ 29.5% additional LUTs,
≈ 0.45% additional FFs and ≈ 60.5% LUTRAMs over the
standard CAN controller. The higher LUT/LUTRAM usage
results from a fully unrolled implementation of the model,
which allows the model to achieve line-rate analysis at the
same clock rate as the controller. We further measure the
per-message energy consumption of the IDS by monitoring
the power rails on the ZCU104 board during IDS execution.
Table III compares SecCAN’s energy consumption per infer-
ence against other works in the literature which have reported
energy consumption. Our model consumes only 73.7µJ per
message on average, a 3.1× improvement over our 2-bit
quantised coupled accelerator IDS [20], achieved primarily
through lower operating speed and the Q-IDS IP optimisa-
tions. Compared to software IDS, SecCAN achieves a 34.1×
reduction in energy consumption over an 8-bit variant of
our model on a Jetson Xavier. Similarly, SecCAN consumes
24.1× and 28.4× lower energy per inference than a GRU-
based IDS [12] and a convolutional autoencoder-model [21]
on Jetson Xavier and Zynq Ultracale+ platforms respectively.
While other competing schemes such as MTH-IDS [11] and
iForest [9] do not explicitly report their energy consumption,
they are re-implemented on Raspberry Pi-3 and Pi-4 devices
for comparison (as in the original article). In comparison to
these, SecCAN’s energy consumption was found to be 17.6×
and 5.3× lower per inference. It should be noted that energy
measurement for SecCAN is for the extended CAN controller
(SecCAN) as opposed to the IDS-only energy consumption
reported and measured for competing schemes.

IV. CONCLUSION

In this letter, we explore a smart CAN controller archi-
tecture that integrates a light-weight machine learning model
as an IDS accelerator within the CAN controller (SecCAN
controller) to detect the onset of intrusions from CAN traffic

flow. By integrating the IDS within the controller, the proposed
SecCAN controller can classify benign/attack messages before
the reception window is completed—an approach that has not
been explored before to the best of our knowledge. This flow
allows safety mechanisms and intrusion prevention systems to
be triggered as soon as the ECU receives a message, unlike
conventional integration approaches where the IDS processing
can begin only after the ECU has fully received the message
from the CAN controller. The embedded IDS consumes only
73.7µJ per classification of each message while achieving
99.993% & 99.966% detection accuracy across multiple attack
vectors and datasets, with a low resource overhead of < 30%
LUT & < 1% FF on an AMD Zynq XCZU7EV. We believe
that the SecCAN architecture is scalable and can pave the
way towards smarter IDS approaches in existing and future
automotive networks.
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